
TRANSFORMER-BASED FOUNDATION MODELS AND HIGH-

PERFORMANCE COMPUTATIONAL TOOLS FOR 

CHROMATIN ACCESSIBILITY ANALYSIS

by

Nathan J. LeRoy

A DISSERTATION

Submitted to the School of Engineering and Applied Science
University of Virginia

In partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

December 2025



Acknowledgements

There are too many people for which I am grateful who got me to this point – I could not possibly list 

them all. However, I would like to specifically acknowledge a few key individuals.

First, my advisor, Dr. Nathan Sheffield, for his amazing guidance and support throughout my PhD 

journey. His mentorship has been invaluable, and his passion for science is truly inspiring.

To my parents, Bob and Lynn LeRoy. Your unwavering love and support have been the foundation of 

my success. Thank you for always believing in me and encouraging me to pursue my dreams.

To Alex and Donald, my labmates and friends. Your camaraderie and collaboration have made this 

journey so enjoyable and fulfilling. Thank you for the countless discussions, brainstorming sessions, 

and shared experiences. You’ve made me a better scientist, engineer, and person.

To Barnabas, my closest friend. Your unwavering support, encouragement, and friendship have meant 

the world to me. Thank you for always being there through the ups and downs. It feels like only 

yesterday we were discussing our dreams and aspirations at Purdue, and now here we are.

And finally, to Hannah, my partner in life. Your love, patience, and understanding have been my 

anchor throughout this journey. Thank you for believing in me and supporting me every step of the 

way. This dissertation is as much yours as it is mine.

2



Abstract

Chromatin accessibility profiling through scATAC-seq has emerged as a powerful tool for 

understanding gene regulation and cellular heterogeneity, yet existing analytical methods fail to 

leverage the nearly 10,000 datasets in the public repositories and remain computationally intensive for 

routine use. While existing tools adequately handle basic single-cell chromatin accessibility analysis, 

they are not architected to leverage modern deep learning approaches that could unlock insights 

across biological contexts and enable integration into advanced analytical workflows at scale. Recent 

advances in machine learning suggest a path forward. Transfer learning, particularly with large 

pre-trained models, has shown promise in scRNA-seq applications by enabling improved cell type 

clustering, identification, and dataset integration across studies. However, the application of transfer 

learning to scATAC-seq remains underexplored, despite similar structural and analytical challenges 

shared between the modalities.

This dissertation presents a comprehensive framework for scATAC-seq analysis that addresses these 

limitations through transformer-based transfer learning. The central innovation is to conceptualize 

genomic regions as discrete linguistic tokens, enabling direct adaptation of natural language 

processing techniques to epigenomic data. This approach facilitates the creation of open, generalizable 

foundation models that improve computational efficiency while enabling biological discovery across 

diverse datasets.

We first introduce the gtars toolkit, which provides efficient Rust-based utilities for creating consensus 

genomic interval vocabularies and tokenizing datasets into shared representations. These tools 

address critical infrastructure gaps in systematic vocabulary creation and efficient dataset mapping. 

Building on this foundation, we present scEmbed, a Word2Vec-inspired model that demonstrates 

the feasibility of tokenized chromatin accessibility modeling through fixed region embeddings that 

encode shared regulatory context. While scEmbed enables rapid clustering and cross-dataset cell-

type annotation, its static embeddings reveal limitations in capturing cell-state-specific regulatory 

dynamics.

To address these constraints, we develop Atacformer, a transformer-based foundation model pre-

trained on 1.2 million cells from 30 tissues. Through self-attention mechanisms, Atacformer generates 

contextualized representations that capture cell-level chromatin accessibility patterns and contextual 

dependencies within regulatory profiles. Unlike existing foundation models that use continuous 

representations and require large parameter counts, Atacformer maintains discrete token-level 

3



embeddings, achieving comparable performance with dramatically fewer parameters while preserving 

interpretability. We further introduce CRAFT, a dual-encoder architecture pairing Atacformer with 

Geneformer to enable cross-modal alignment between scATAC-seq and scRNA-seq data.

Across multiple benchmarks, these approaches demonstrate strong performance in zero-shot 

clustering, annotation, and batch correction while revealing biologically meaningful regulatory 

relationships at the single-region level, including the discovery of weak promoter elements. Together, 

these contributions establish a scalable, transferable framework that bridges isolated experiments 

with unified biological insights, democratizing deep learning approaches for chromatin accessibility 

analysis and laying the groundwork for standardized analysis of chromatin accessibility data across 

diverse biological contexts.

4



Table of contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠2

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠3

Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠5

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠9

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠11

Chapter 1: Introduction to gene regulation, ATAC-seq and current analytical 
challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠12

A brief history of gene regulation and the study of chromatin accessibility . . . . . . . . . . . . . . . . . . . . . . ⁠12

Why does the same DNA makes different cells? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠12

The rise of epigenomics assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠13

Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and its single-cell 
counterpart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠17

Computational challenges in single-cell ATAC-seq analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠18

The high-dimensionality and inherent sparsity of scATAC-seq data . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠18

Traditional single-cell ATAC-seq analysis methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠19

End-to-end pipelines and more recent methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠20

Deep learning-based methods for scATAC-seq analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠21

Generative modeling approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠21

Sequence-based discriminative approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠22

Limitations of current approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠23

Large, pre-trained foundation models for genomic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠23

Foundation models in genomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠23

Foundation models for single-cell ATAC-seq data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠24

A note on tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠24

The first scATAC-seq foundation models: EpiAgent and ChromFound . . . . . . . . . . . . . . . . . . . . . . . . ⁠24

Limitations of current scATAC-seq foundation models: EpiAgent and ChromFound . . . . . . . . . ⁠25

Summary of computational methods for scATAC-seq analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠27

Improving model sharing, efficiency, and flexibility of scATAC-seq foundation models . . . . . . . . . ⁠28

Chapter 2: Background and related work in natural language processing (NLP) . . . . . . . . . . ⁠29

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠29

The rise of natural language processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠29

Word2Vec and word embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠30

From words to numbers: the challenge of word representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠30

One-hot encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠30

Distributed representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠30

Word2vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠31

Recurrent Neural Networks and their gated variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠33

A river bank or a financial bank? Contextual embeddings and their limitations . . . . . . . . . . . . . . ⁠33

5



Recurrent Neural Networks (RNNs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠33

Long Short-Term Memory (LSTM) networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠34

Transformers and attention mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠35

Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠35

Self attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠36

Approximations of self-attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠37

From transformers to large language models and beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠38

Large language models and foundation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠38

Summary of NLP techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠38

From words to genomic regions: adapting NLP techniques to gene regulation . . . . . . . . . . . . . . . . . . . ⁠39

Building machine learning models for genomic interval data using genomic tokens . . . . . . . . . ⁠39

Chapter 3: Efficient computational tools for creating genomic interval vocabularies and 
tokenization frameworks for modern machine learning applications . . . . . . . . . . . . . . . . . . . . . . ⁠41

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠41

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠43

Creating a principled vocabulary for genomic intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠44

Overview of uniwig: a pre-processing tool for consensus genomic interval set construction . ⁠44

Simple coverage-based universe construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠44

Novel methods for constructing consensus genomic interval sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠45

Overview of genomic interval tokenizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠47

Gtars tokenizers are highly performant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠47

Gtars tokenizers work seamlessly with modern machine learning infrastructure . . . . . . . . . . . . . ⁠48

Gtars tokenizers are available in a wide array of computing environments. . . . . . . . . . . . . . . . . . . ⁠48

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠48

Chapter 4: Fast clustering and annotation of scATAC-seq data using pretrained region 
embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠50

Introduction to scEmbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠50

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠52

Overview of the scEmbed architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠52

scEmbed is competitive with existing scATAC-seq methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠53

scEmbed is robust to data loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠54

Using scEmbed to transfer knowledge of genomic region co-occurrence to unseen datasets . ⁠55

Pre-trained models from reference datasets can be used to annotate cell clusters . . . . . . . . . . . . . ⁠57

Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠59

Chapter 5: Atacformer: A transformer-based foundation model for analysis and 
interpretation of ATAC-seq data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠61

Introduction to Atacformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠61

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠63

Atacformer is a new transformer-based foundation model for ATAC-seq data . . . . . . . . . . . . . . . . ⁠63

Atacformer can be paired with Geneformer for powerful multiomics analysis . . . . . . . . . . . . . . . . ⁠65

Fine-tuned Atacformer models and CRAFT enable fast and accurate zero-shot cell-
clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠67

6



Atacformer learns global regulatory structure in bulk region set data . . . . . . . . . . . . . . . . . . . . . . . . . ⁠70

Direct raw-fragment processing with atacformer accelerates scATAC analysis . . . . . . . . . . . . . . . ⁠72

Contextualized region embeddings from scATAC-seq data infers cryptic TSSs . . . . . . . . . . . . . . . ⁠75

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠77

Chapter 6: Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠79

Overview and Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠79

Technical limitations and challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠80

Future Directions: Improving generalization, efficiency, and interpretability of regulatory 
genomics models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠81

Future aim 1: Scaling the training Atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠81

Future aim 2: Improved tokenization strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠83

Future aim 3: Token-level interpretability and fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠85

Future aim 4: Context window optimization — exploring the extremes . . . . . . . . . . . . . . . . . . . . . . . ⁠87

Broader Impact and Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠89

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠90

Appendix A: Supplemental figures and tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠97

Infrastructure extended figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠97

scEmbed extended figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠98

Atacformer extended figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠101

Appendix B: Extended methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠106

Common methods across results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠106

Clustering methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠106

Embedding visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠106

Clustering evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠106

Cell-type classification evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠107

Infrastructure extended methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠108

Gtars and uniwig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠108

Universe construction methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠108

Tokenization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠109

Environment bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠110

Tokenization benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠110

Software and data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠110

scEmbed extended methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠111

Model architecture and training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠111

Data and data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠111

Tokenization of new data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠112

Model benchmarking and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠112

Dropout experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠113

Residual Average Gini Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠113

Transfer learning and projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠113

Projection visualization and cell-type annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠114

7



Atacformer extended methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠115

Data collection and pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠115

Generation of a uniform model vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠115

Genomic interval tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠116

ELECTRA pre-training methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠116

Formal specification of tokenization and pre-training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠117

Cell embedding calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠118

Triplet loss calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠119

Datasets for clustering evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠119

PBMC dataset cell-type annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠120

Labeling data with scVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠120

Bulk training data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠120

Spearman correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠120

Bulk ATAC-seq data imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠121

Multiome data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠121

CRAFT architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠121

CRAFT RNA decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠122

Annotation of Atacformer universe for TSS distance and region type . . . . . . . . . . . . . . . . . . . . . . . . ⁠123

H3K4me3 null distribution generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠123

8



List of figures

Figure 1.1 A schematic representation of gene regulation. . . . . . . . . . . . . . . . . . . . . . . . . ⁠13
Figure 1.2 Trends in epigenomic assay publications over time. Data from PubMed 

searches for key epigenomic assays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠14
Figure 1.3 Overview of the ATAC-seq procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠17
Figure 1.4 Schematic of a scATAC-seq count matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠18
Figure 1.5 Overview of tokenization methods for various modalities. . . . . . . . . . . . . ⁠25
Figure 2.1 Different methods for representing words numerically: one-hot 

encoding vs. distributed representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠32
Figure 2.2 Evolution of word representation and sequence modeling techniques in 

NLP: from Word2Vec to RNNs to Transformers. . . . . . . . . . . . . . . . . . . . . . . . ⁠35
Figure 3.1 Overview of uniwig and the universe creation tools. . . . . . . . . . . . . . . . . . . ⁠43
Figure 3.2 Overview and benchmarking of gtokenizers, a Rust-based library for 

genomic interval tokenization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠46
Figure 4.1 An overview of the scEmbed architecture and training procedure. . . . ⁠52
Figure 4.2 Benchmarking shows that scEmbed is competitive with existing 

approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠53
Figure 4.3 scEmbed enables knowledge transfer to unseen datasets. . . . . . . . . . . . . . ⁠55
Figure 4.4 Pre-trained embedding models can be exploited for cell-type annotation 

tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠57
Figure 5.1 An overview of the Atacformer architecture and training procedure. . ⁠63
Figure 5.2 CRAFT is a powerful dual-encoder, multimodal single-cell embedding 

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠65
Figure 5.3 Atacformer clusters new scATAC data accurately in a zero-shot 

approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠67
Figure 5.4 Atacformer generalizes to bulk regulatory datasets. . . . . . . . . . . . . . . . . . . . ⁠70
Figure 5.5 Atacformer is the only method that operates on sequence fragments 

directly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠72
Figure 5.6 Atacformer uncovers weak promoters using scATAC-seq data alone. . ⁠75
Figure 6.1 Overview of the expanded training atlas and its components. . . . . . . . . ⁠81
Figure 6.2 Overview of the improved tokenization strategies and their 

components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠83
Figure 6.3 Overview of the further directions for token-level interpretability and 

fine-tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠85
Supplementary Figure A.1 Universes overview and results of base-level overlap score. . . . . . . . . . . . ⁠97
Supplementary Figure A.2 scEmbed clusters cells from the Luecken2021 dataset. . . . . . . . . . . . . . . . . . ⁠98
Supplementary Figure A.3 scEmbed enables knowledge transfer to unseen datasets. . . . . . . . . . . . . . ⁠98
Supplementary Figure A.4 Distributions of the RAGI scores for all subsampled cells. . . . . . . . . . . . . . ⁠99
Supplementary Figure A.5 Cellcano cell type annotations for PBMC dataset. . . . . . . . . . . . . . . . . . . . . ⁠100
Supplementary Figure A.6 Epoch tests show that scEmbed learns well after 100 epochs. . . . . . . . . ⁠100
Supplementary Figure A.7 Distribution of context window lengths in the Atacformer training 

corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠101
Supplementary Figure A.8 Dual UMAP visualization of both the ATAC and RNA co-

embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠102
Supplementary Figure A.9 Atacformer is robust to severe degradation in context-window size. . ⁠102
Supplementary Figure A.10 Fine-tuning Atacformer for a cell-clustering task improves latent space 

separation of individual cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠103
Supplementary Figure A.11 Atacformer performs strong zero-shot batch correction on processed 

and unprocessed data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠103
Supplementary Figure A.12 Training dataset assay and cell line distribution for the bulk-ATAC 

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠104

9



Supplementary Figure A.13 Cell line imputation for missing BEDbase data using a fine-tuned 
Atacformer model on bulk-ATAC data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠104

Supplementary Figure A.14 Extra supplemental anecdotes of H3K4me3 enrichment in icTSS 
regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠105

Supplementary Figure A.15 Multi-dataset analysis of Atacformer embeddings. . . . . . . . . . . . . . . . . . . . ⁠105

10



List of tables

Table 1.1 Summary of epigenomic assays and their biological insights . . . . . . . . . . . . ⁠16
Table 1.2 Summary of computational approaches for scATAC-seq data . . . . . . . . . . . ⁠27
Table 2.1 Summary of NLP techniques and models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠39
Supplementary Table A.1 Label mapping between scEmbed and cellcano for consistent comparison 

of classification performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠99
Supplementary Table A.2 Supplementary Table 1: Detailed information about all datasets used to 

curate the single-cell atlas for Atacformer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⁠101

11



Chapter 1: Introduction to gene regulation, ATAC-seq and 

current analytical challenges

A brief history of gene regulation and the study of chromatin 

accessibility

Why does the same DNA makes different cells?

Inside the nucleus of all 30 trillion of our cells is about six feet of DNA tightly packed and coiled 

up into compact structures called chromosomes1. Remarkably, this DNA sequence is nearly identical 

across all cell types within an individual, yet it gives rise to extraordinary levels of heterogeneity 

in cell types, tissues, disease states, and physiological responses. This fundamental paradox raises a 

critical question: how does a single, static genetic blueprint generate such diverse biological outcomes?

While the DNA sequence itself is largely invariant across cell types, its interpretation is highly 

dynamic and context-specific. Cells achieve this through complex layers of gene regulation, which 

govern when, where, and to what extent specific genes are transcribed into RNA. At the heart 

of this regulatory machinery are elements like promoters, which initiate transcription near gene 

start sites, and enhancers, which can activate transcription at distant genomic loci in a cell-type–

specific manner2. These elements recruit combinations of transcription factors, activators, and RNA 

polymerases to modulate gene expression. However, for these proteins to access their target DNA 

sequences, the local chromatin must be in an open or accessible state. This is why these interactions 

are fundamentally influenced by the chromatin landscape, which determines the physical accessibility 

of DNA to regulatory proteins.3 (Figure 1.1).

Briefly, promoters are DNA sequences located near gene start sites that serve as binding platforms for 

RNA polymerase and initiate transcription. Enhancers are regulatory sequences that can be located 

thousands of base pairs away from their target genes and boost transcription levels when bound 

by appropriate transcription factors. Transcription factors are proteins that bind to specific DNA 

sequences and either activate or repress gene expression. RNA polymerase is the enzyme responsible 

for transcribing DNA into RNA. Finally, chromatin refers to the complex of DNA and histone proteins 

that packages genetic material in the nucleus, with its structure determining which regions are 

accessible for transcription.

Thus, taken together, biological heterogeneity arises not only from subtle differences in genetic 

code but from the selective and combinatorial usage of regulatory elements across different cell 

types, developmental stages, and environmental conditions. Because of this, understanding gene 

12



regulation is key to deciphering how the same DNA sequence can lead to diverse cellular identities 

and functions. In turn, this knowledge is critical for unraveling the molecular basis of health and 

disease, as dysregulation of these processes underlies many pathological conditions including cancer, 

developmental disorders, and immune dysfunction.

promoter gene

enhancer

distal enhancer
elements

activators

transcription
factor RNA

polymerase

RNA
polymerase

transcription
factor

complex

promoter gene

Figure 1.1: A schematic representation of gene regulation.

The rise of epigenomics assays

The completion of the Human Genome Project4 in 2003 enabled various ‘omics technologies which, as 

a result, facilitated the exploration of gene regulation and epigenomics. Simultaneously, genome-wide 

association studies (GWAS) revealed that approximately 90% of disease-associated single nucleotide 

polymorphisms (SNPs) are located in non-coding regions of the genome, underscoring the crucial 

importance of studying gene regulation and epigenomics in human health and disease for driving 

this biological heterogeneity5,6. This discovery catalyzed the development of numerous experimental 

approaches to study regulatory elements (Figure 1.2).

To comprehensively map the regulatory landscape, researchers have developed complementary 

experimental strategies that interrogate different aspects of chromatin biology. These approaches 

can be organized into three conceptual categories based on what they measure: (1) epigenetic 

modifications that mark regulatory states, exemplified by DNA methylation analysis; (2) chromatin 

accessibility and protein-DNA interactions that indicate active regulatory elements, including DNase-

seq, FAIRE-seq, ATAC-seq, ChIP-seq, and CUT&TAG; and (3) three-dimensional genome organization 

that constrains regulatory interactions, captured through Hi-C. Together, these techniques provide a 

13



multi-dimensional view of gene regulation. Each approach is described in detail below, organized by 

the biological question it addresses.

N
u

m
be

r 
of

 p
u

bl
ic

at
io

n
s

Year

2000 2005 2010

0

200

400

600

ATAC-seq

Hi-C

800

2015 2020 2025

FAIRE-seq

DNase-seq

CUT&TAG
ChIP-seq

Bisulfite-seq

PubMed citations for epigenomic assays

Figure 1.2: Trends in epigenomic assay publications over time. Data from PubMed searches for key epigenomic 

assays.

Mapping epigenetic modifications

DNA methylation represents one of the most stable epigenetic marks, serving as a foundational layer 

of gene regulation that can persist through cell division and development.

DNA methylation analysis through bisulfite sequencing

DNA methylation is a key epigenetic modification that plays a critical role in regulating 

gene expression by influencing chromatin structure and transcription factor accessibility7,8. DNA 

methylation analysis through bisulfite sequencing assesses cytosine methylation status at single-

base resolution9,10. This technique involves treating DNA with bisulfite, which converts unmethylated 

cytosines to uracils, while leaving methylated cytosines unchanged. Subsequent sequencing of 

the treated DNA identifies methylated versus unmethylated cytosines, providing insights into the 

epigenetic regulation of gene expression through DNA methylation patterns.

Profiling protein-DNA interactions

Beyond static epigenetic marks, the dynamic binding of regulatory proteins to DNA determines 

which genes are actively transcribed. Two complementary approaches have emerged to map these 

interactions genome-wide.

Chromatin immunoprecipitation sequencing (ChIP-seq)

Transcription factors and histone modifications are central regulators of gene expression, and 

mapping their binding sites is essential for understanding gene regulatory networks11,12. ChIP-seq is 

a powerful technique used to analyze protein-DNA interactions on a genome-wide scale13. It involves 

14



crosslinking proteins to DNA, followed by shearing the DNA and immunoprecipitating the protein 

of interest using specific antibodies. The associated DNA is then purified and sequenced, to identify 

binding sites and regulatory elements.

CUT&TAG

Building on the principles of ChIP-seq, CUT&TAG offers a more refined approach with improved 

sensitivity and reduced input requirements. CUT&TAG is a method used to profile protein-DNA 

interactions with high resolution and low input requirements14. It involves the use of a Tn5 transposase 

fused to an antibody that targets a specific protein of interest. This allows for the selective tagging 

and subsequent sequencing of accessible chromatin regions associated with the protein, providing 

insights into its regulatory role. Compared to traditional ChIP-seq, CUT&TAG offers improved signal-

to-noise ratios and reduced background, making it particularly valuable for studying low-abundance 

proteins or working with limited cell numbers.

Measuring chromatin accessibility

While protein binding studies reveal where regulatory factors associate with DNA, chromatin 

accessibility assays provide a broader view of which genomic regions are available for regulatory 

interactions. These techniques have evolved from enzymatic digestion approaches to transposase-

based methods, each offering unique advantages for mapping open chromatin.

DNase hypersensitivity sequencing (DNase-seq)

Because regulatory elements such as promoters and enhancers reside in regions of open chromatin, 

mapping DNase I hypersensitive sites has long been a key strategy for identifying functional 

regulatory elements across the genome15. DNase-seq is a technique used to map regions of open 

chromatin by identifying sites of DNase I hypersensitivity16. It involves treating nuclei with DNase I, 

which cleaves accessible DNA, followed by sequencing the resulting fragments. This method provides 

insights into chromatin accessibility and the regulatory landscape of the genome.

Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE-seq)

FAIRE-seq leverages the fact that active regulatory elements are often nucleosome-depleted, providing 

a complementary approach to DNase-based assays for detecting accessible chromatin. FAIRE-seq 

is a method used to identify nucleosome-depleted regions of the genome, which are indicative of 

regulatory elements17. It involves crosslinking chromatin with formaldehyde, followed by phenol-

chloroform extraction to isolate DNA from nucleosome-depleted regions. The purified DNA is then 

sequenced to map these regulatory elements.

Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq)

Representing a technical advance over both DNase-seq and FAIRE-seq, ATAC-seq combines simplicity 

with sensitivity to provide robust accessibility maps. The Assay for Transposase-Accessible Chromatin 

15



using sequencing (ATAC-seq)18 is a method used to assess chromatin accessibility. It involves the use 

of a hyperactive Tn5 transposase to insert sequencing adapters into accessible regions of the genome. 

This technique allows for the identification of open chromatin regions and the characterization of 

regulatory elements. ATAC-seq has become a widely adopted method due to its simplicity, speed, 

and ability to generate high-resolution maps of chromatin accessibility from small amounts of input 

material.

Capturing three-dimensional genome organization

The spatial organization of chromatin in three dimensions adds another critical layer of gene 

regulation, as physical proximity between distant genomic elements enables long-range regulatory 

interactions.

Chromatin Conformation Capture (Hi-C)

Because genome folding constrains which regulatory elements can physically contact their target 

genes, Hi-C provides a powerful way to link chromatin architecture with gene regulation19,20. Hi-C is 

a technique used to study the three-dimensional organization of the genome. It involves crosslinking 

chromatin, followed by digestion with a restriction enzyme and ligation of the resulting fragments. 

This method identifies interactions between distant genomic regions, providing insights into the 

spatial organization of the genome21. Specifically, Hi-C can identify topologically associating domains 

(TADs) and chromatin loops that bring enhancers into close proximity with their target promoters.

Integration and single-cell advances

The techniques described above provide complementary views of gene regulation, from epigenetic 

modifications to protein binding, chromatin accessibility, and three-dimensional organization. 

Importantly, many of these approaches have been successfully adapted to single-cell formats22–24, 

enabling the dissection of regulatory heterogeneity within complex tissues and the identification 

of rare cell states that would be masked in bulk measurements. These methods are summarized in 

Table 1.1.

Table 1.1: Summary of epigenomic assays and their biological insights

Epigenomic assay What it measures

DNA Methylation Cytosine methylation status via bisulfite conversion

DNase-seq Chromatin accessibility via DNase I cleavage

ChIP-seq Protein-DNA binding via immunoprecipitation

ATAC-seq Chromatin accessibility via Tn5 transposase insertion

FAIRE-seq Nucleosome-depleted regions via phenol-chloroform extraction

CUT&Tag Targeted chromatin profiling via antibody-Tn5 fusion

Hi-C 3D chromatin conformation via proximity ligation

16



Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and its 

single-cell counterpart

Among these assays, ATAC-seq has emerged as a widely adopted method for studying gene regulation 

due to its simplicity, speed, and ability to generate high-resolution maps of chromatin accessibility 

from small amounts of input material (Figure 1.2). Unlike earlier methods, it requires no antibodies 

or extensive sample prep, making it especially well-suited for rare or primary cells. Its adaptability to 

single-cell formats has enabled high-throughput profiling of cell-type–specific regulatory landscapes, 

fueling discoveries in development, cancer, and immunology. By revealing open chromatin regions 

that mark active promoters, enhancers, and other regulatory elements, ATAC-seq provides critical 

insights into how gene expression is controlled across diverse biological contexts18.

tissue

genomic material transposed and cut
open chromatin regions

sequencer

si
gn

al

Tn5 transposase
adapters

accessible
fragments

chromatin
accessibility

signal

genome track

a b c d

Figure 1.3: Overview of the ATAC-seq procedure.

The fundamental goal behind ATAC-seq is to identify regions of open chromatin across the genome, 

which are indicative of regulatory elements such as promoters and enhancers that control gene 

expression. The assay leverages the hyperactive Tn5 transposase enzyme, which preferentially inserts 

sequencing adapters into accessible regions of the genome where nucleosomes are absent or loosely 

bound18 (Figure 1.3A). The Tn5 transposase simultaneously cleaves the DNA and ligates sequencing 

adapters in a process known as “tagmentation.” This results in a library of DNA fragments that are 

significantly enriched for open chromatin regions (Figure 1.3B).

These DNA fragments are then PCR-amplified to add sample-specific barcodes and sequencing 

primers, followed by high-throughput sequencing, typically using Illumina platforms (Figure 1.3C). 

The resulting sequencing reads are aligned to a reference genome, and peaks of read enrichment are 

identified using computational tools such as MACS225. These peaks correspond to regions of accessible 

chromatin, providing insights into the regulatory landscape of the cell type under study (Figure 1.3D).

ATAC-seq remains a staple in epigenomic research, however, its adaptation to single-cell formats 

(scATAC-seq) has revolutionized the field by enabling the profiling of chromatin accessibility at 

17



the resolution of individual cells24,26. This advancement allows researchers to dissect the regulatory 

heterogeneity within seemingly homogeneous cell populations, identify rare cell types, and trace 

developmental trajectories based on chromatin dynamics. In scATAC-seq, individual cells are isolated 

using microfluidics or droplet-based platforms, and the ATAC-seq protocol is adapted to work with 

the limited DNA content of single cells. The resulting data provides cell-type–specific accessibility 

profiles that can be integrated with single-cell RNA sequencing to create comprehensive regulatory 

maps linking chromatin state to gene expression across diverse cell types and developmental stages.

Computational challenges in single-cell ATAC-seq analysis

The high-dimensionality and inherent sparsity of scATAC-seq data

While scATAC-seq has opened new avenues for understanding gene regulation, it also presents unique 

challenges, such as increased technical variability and the need for specialized computational tools to 

analyze the resulting data. Addressing these challenges is crucial for fully realizing the potential of 

single-cell epigenomics in uncovering the complexities of gene regulation.

A scATAC-seq dataset is often represented as a binary matrix where rows correspond to cells, and 

columns correspond to genomic loci (Figure 1.4). These matrices are frequently characterized by their 

high dimensionality and inherent sparsity, posing significant challenges for computational analysis. 

Because each cell only contains two copies of each chromosome, and because the assay measures 

accessibility at upwards of 1 million genomic loci, the resulting data matrix is often extremely sparse 

and high-dimensional. It is not uncommon for matrices to exceed a hundred thousand rows and one 

million columns with only a small fraction of the entries filled. This sparsity can make it difficult 

to accurately infer regulatory interactions and identify cell-type-specific patterns of chromatin 

accessibility. Furthermore, the high dimensionality of scATAC-seq data can make traditional statistical 

methods less effective26 while simultaneously presenting significant computational challenges both in 

terms of memory and processing power.

ce
ll

s

regions

Figure 1.4: Schematic of a scATAC-seq count matrix.

To address these challenges, researchers have developed new computational methods and tools 

specifically designed for scATAC-seq data. These approaches aim to improve data normalization, 

enhance signal detection, and facilitate the integration of scATAC-seq data with other single-

18



cell modalities, such as scRNA-seq. By leveraging advances in machine learning and statistical 

modeling, these methods hold promise for unlocking the full potential of single-cell epigenomics in 

understanding gene regulation.

Traditional single-cell ATAC-seq analysis methods

Soon after the onset of scATAC-seq, several computational tools were developed to address the unique 

challenges posed by the data modality. Among those were chromVAR27, BROCKMAN28, Cicero29, 

cisTopic30, SnapATAC31, SCRAT32, and EpiScanpy33. Each of these tools employs distinct strategies to 

extract regulatory and cell-type information.

Peak-based variability analysis: chromVAR

chromVAR focuses on estimating the variability of chromatin accessibility across peaks that share 

common features, such as transcription factor motifs or specific k-mers. This method enables 

researchers to identify regulatory elements that show differential accessibility across cell types or 

conditions by leveraging known sequence motifs and annotations. By computing deviation scores for 

each motif in each cell, chromVAR provides insights into the activity of specific transcription factors 

across single-cell profiles27.

Sequence-based dimensionality reduction: BROCKMAN

BROCKMAN represents genomic sequences using gapped k-mers within transposase integration 

sites and applies principal component analysis (PCA) to capture variation in k-mer occupancy. This 

approach bypasses the need for peak calling by directly analyzing the sequence context of ATAC-

seq insertions. The method’s focus on k-mer patterns allows it to capture regulatory signals that 

might be missed by peak-centric approaches, providing a complementary perspective on chromatin 

accessibility patterns. By treating accessibility as a sequence-based problem rather than a peak-based 

one, BROCKMAN can identify subtle regulatory motifs and sequence preferences that drive chromatin 

accessibility differences between cell types.

Gene activity scoring and regulatory networks: Cicero

Cicero leverages and estimates gene activity scores at each peak by computing accessibility 

at promoters with the regulatory potential of nearby peaks. This method goes beyond simple 

accessibility measurements by attempting to link distal regulatory elements to their target genes 

through co-accessibility analysis. Cicero constructs regulatory networks by identifying peaks that 

are frequently accessible together, enabling the prediction of gene regulatory relationships and the 

identification of putative enhancer-promoter interactions.

Topic modeling approaches: cisTopic

cisTopic uses latent Dirichlet allocation (LDA), a Bayesian topic modeling method originally developed 

for natural language processing, to simultaneously uncover cell states and putative regulatory regions. 

19



In this framework, cells are treated as documents and accessible regions as words, allowing the method 

to identify “topics” that represent co-accessible regulatory programs. This probabilistic approach 

enables the discovery of regulatory modules and cell types while providing interpretable results about 

the underlying regulatory architecture.

Latent semantic indexing approaches

Another class of approaches, which follow the Cusanovich201834 pipeline, employs latent semantic 

indexing (LSI). These methods begin by partitioning the genome into windows, normalizing 

read counts using the term frequency–inverse document frequency (TF-IDF) transformation. 

Dimensionality is then reduced using singular value decomposition (SVD), and a first round of 

clustering—termed “in silico cell sorting”—is performed to identify clades and call peaks within them. 

A second round of TF-IDF and SVD is applied using read counts in the called peaks to refine the 

clusters. This technique, borrowed from natural language processing, is crucial because it down-

weights common, broadly accessible regions (equivalent to ‘the’ or ‘a’ in text) while up-weighting 

rare regions that are uniquely accessible in specific cell types, thereby highlighting cell-type–defining 

features. This iterative approach combines dimensionality reduction with peak calling to improve 

both cell clustering and regulatory region identification.

SnapATAC: Bin-based analysis with regression normalization

SnapATAC segments the genome into uniform bins and corrects for library size differences using 

regression-based normalization, followed by PCA to identify key components for clustering analysis. 

Specifically, regression-based normalization is employed to adjust for technical confounders such 

as sequencing depth and mitochondrial read fraction, which can introduce biases in the data. This 

normalization step helps to mitigate the effects of these confounders, allowing for a more accurate 

representation of the underlying biological signal. Following normalization, PCA is applied to reduce 

the dimensionality of the data and identify the principal components that capture the most variance. 

These components are then used for clustering analysis, enabling the identification of distinct cell 

populations based on their chromatin accessibility profiles. Unlike peak-based methods, this approach 

attempts to avoid potential biases introduced by peak calling algorithms by analyzing accessibility 

in fixed genomic windows. The regression-based normalization specifically addresses technical 

confounders such as sequencing depth and mitochondrial read fraction, making it particularly robust 

for large-scale comparative analyses.

End-to-end pipelines and more recent methods

Still, more methods have continued to emerge, incorporating more robust statistical frameworks, end-

to-end pipelines, and novel algorithms for dimensionality reduction, clustering, and visualization. 

20



Examples of this include ArchR35: a comprehensive software suite for end-to-end analysis of single-cell 

chromatin accessibility written in R, Signac36: an extension of the Seurat framework for the analysis of 

single-cell chromatin data, and SnapATAC237: a rust-based package for fast, memory-efficient analysis 

of scATAC-seq data that leverages a novel spectral embedding dimensionality reduction algorithm 

called spectral embedding. SnapATAC2, in particular was one of the first python-native tools for 

scATAC-seq, targeting atlas-scale datasets with millions of cells. As such, it incorporates a number 

of algorithmic improvements to enable faster processing and lower memory usage. It was recently 

integrated into the scverse ecosystem as part of the scvi-tools package38, which provides a suite of 

tools for probabilistic modeling and analysis of single-cell omics data.

Together, these tools have significantly advanced the field of single-cell epigenomics, enabling 

extraction of meaningful biological insights from complex scATAC-seq datasets. Researchers now 

have access to a diverse array of computational resources in many programming languages and 

environments, facilitating the study of gene regulation at single-cell resolution. As the field continues 

to mature and evolve, this has paved the way for more sophisticated methods, including deep learning-

based approaches to extract even more intricate patterns of chromatin accessibility.

Deep learning-based methods for scATAC-seq analysis

As deep learning revolutionizes fields like computer vision (CV) and natural language processing 

(NLP), researchers are exploring its application to single-cell genomics, including scATAC-seq 

analysis. Deep learning models, particularly those based on neural networks, show promise in 

capturing complex patterns and relationships within high-dimensional data. The computational 

methods developed for scATAC-seq analysis can be conceptually organized into two primary 

paradigms based on their underlying modeling strategy: (1) generative models that learn latent 

representations of chromatin accessibility patterns from peak-by-cell matrices, exemplified by SCALE 

and PeakVI; and (2) sequence-based discriminative models that leverage DNA sequence information to 

predict accessibility, as demonstrated by scBasset. These complementary approaches address different 

aspects of the scATAC-seq analysis challenge and offer distinct advantages for understanding cellular 

heterogeneity and regulatory mechanisms.

Generative modeling approaches

Generative models for scATAC-seq data learn probabilistic representations of chromatin accessibility 

by modeling the underlying distribution of peak-by-cell observations. These methods employ 

variational inference frameworks to capture complex dependencies in the data while enabling 

dimensionality reduction, denoising, and clustering.

21



SCALE: A variational autoencoder for scATAC-seq

One of the first deep learning methods developed for scATAC-seq data was SCALE39, which employs 

a deep generative model to learn a low-dimensional representation of scATAC-seq data. SCALE 

uses a variational autoencoder (VAE) architecture to model the underlying distribution of chromatin 

accessibility profiles, enabling effective dimensionality reduction and clustering of cells based on 

their accessibility patterns. SCALE takes as input a binarized peak-by-cell matrix and learns a latent 

representation that captures the key features of the data while accounting for technical noise and 

variability. The model is trained using a combination of reconstruction loss and a regularization term 

that encourages the latent space to follow a prior distribution, typically a standard normal distribution. 

This approach allows SCALE to effectively denoise the data and identify meaningful biological 

variation among cells.

PeakVI: A variational inference model with batch correction

Building on the generative modeling framework established by SCALE, PeakVI introduces explicit 

handling of technical variation and batch effects while decomposing accessibility observations into 

interpretable components. This method leverages variational inference with deep neural networks 

to model scATAC-seq data by decomposing chromatin accessibility observations into three key 

components40. PeakVI employs a variational autoencoder architecture where an encoder network 

infers latent representations from observed data, a decoder network generates accessibility probability 

estimates, and auxiliary neural networks estimate region-specific scaling factors. This approach 

enables batch correction, normalized visualization, and clustering while providing interpretable 

estimates of the true chromatin landscape by separating biological signal from technical confounders.

Sequence-based discriminative approaches

While generative models learn from observed accessibility patterns, sequence-based approaches 

leverage the DNA sequence itself as input, enabling predictions for arbitrary genomic regions and 

capturing sequence-specific regulatory logic.

scBasset: A convolutional neural network for sequence-based chromatin accessibility

Representing a fundamentally different modeling paradigm, scBasset41 leverages a convolutional 

neural network (CNN) architecture to learn sequence-based representations of chromatin accessibility. 

scBasset is trained on the actual DNA sequences underlying accessible regions, allowing it to capture 

sequence motifs and patterns associated with regulatory elements. This approach enables improved 

prediction of chromatin accessibility and identification of cell-type-specific regulatory features. One 

key advantage of scBasset is its ability to analyze new, unseen genomic regions based on their sequence 

content, making it more flexible and generalizable compared to methods that rely solely on predefined 

22



peak sets. The model is trained using a binary cross-entropy loss function, optimizing the network to 

accurately predict accessibility status based on sequence input.

Limitations of current approaches

While these methods demonstrate the power of deep learning for scATAC-seq analysis, they also 

face important limitations that constrain their applicability. SCALE is designed to be retrained with 

each new dataset, limiting its ability to generalize across experiments and requiring substantial 

computational resources for each analysis. scBasset, while leveraging sequence information to enable 

predictions on novel genomic regions, does not directly model cell-to-cell variability in accessibility 

profiles, which is a fundamental characteristic of single-cell data. PeakVI addresses batch effects 

more explicitly than SCALE but still requires dataset-specific training. Moreover, all of these methods 

require substantial computational resources for both training and inference, which can be a barrier for 

widespread adoption. These limitations highlight the need for more flexible and efficient approaches 

to scATAC-seq analysis that can generalize across datasets while still leveraging the representational 

power of deep learning.

Large, pre-trained foundation models for genomic data

Foundation models in genomics

One of the most exciting developments in machine learning has been the emergence of large, pre-

trained models that can be fine-tuned for specific tasks with relatively little additional data. These 

models, often referred to as “foundation models,” have demonstrated remarkable performance across 

a wide range of applications, from image recognition to natural language understanding42–49.

The emergence of foundation models in computer vision (CV) and NLP has inspired similar efforts in 

the field of genomics. Typically built on the transformer architecture50, these models are pre-trained 

on large-scale genomic datasets and can be used in a variety of downstream tasks for zero-shot 

predictions, few-shot learning, and transfer learning. Examples include DNABERT51: bidirectional 

encoder for DNA sequences, Enformer: a model that predicts gene expression from DNA sequence52, 

AlphaFold: a model for predicting protein structures from amino acid sequences53–55, DNA Discrete 

Diffusion: a model for generating DNA sequences with desired properties56, scGPT: a transformer-

based model for single-cell RNA-seq data57, and Geneformer: a transformer-encoder model for 

scRNA-seq data58. Overwhelmingly, these models will be pre-trained on large, diverse datasets and 

then leveraged for transfer learning to apply them to new, unseen datasets and tasks. This makes them 

particularly attractive as they can be fine-tuned with relatively little data and computational resources 

compared to training a model from scratch which is often infeasible for many researchers.

23



Foundation models for single-cell ATAC-seq data

While many models exist for DNA sequences, protein sequences, and scRNA-seq data, until very 

recently, there has been a lack of similar efforts focused on scATAC-seq data. This is likely due to 

the unique challenges posed by scATAC-seq data, including its high dimensionality, sparsity, and the 

complex relationship between chromatin accessibility and gene regulation. Moreover, scATAC-seq 

data is less ubiquitous than other types of genomic data, making it much more difficult to obtain large, 

diverse training datasets. Beyond the complexity and scarcity of data, however, lies an even more 

fundamental obstacle: the lack of a universal ‘vocabulary’ for chromatin accessibility.

A note on tokenization

Regardless of data modality (text, images, DNA sequences), tokenization is a critical first step for all 

foundation models, as it defines how raw, disparate inputs are mapped into a shared feature space 

that the model can operate on. In natural language processing, this is achieved through subword 

vocabularies that segment text into units like words or byte-pair encodings, creating a stable and 

universal representation of language59–61. In computer vision, images are typically partitioned into 

fixed-size patches that act as tokens, enabling transformers to process them as sequences.

Genomics has followed suit: proteomics and transcriptomics benefit from clear, biologically grounded 

vocabularies — amino acids for proteins, and nucleotides or k-mers for RNA. Supported by established 

gene ontologies, this makes it comparatively easy to build well-defined vocabularies and tokens for a 

model to process. By contrast, single-cell ATAC-seq presents a uniquely difficult tokenization problem: 

the natural unit of information in ATAC-seq, a genomic interval, is not standardized across experiments 

or datasets, and “shared vocabularies” can vary dramatically depending on how peaks are called or 

which reference regions are chosen. This lack of a canonical token set has delayed the emergence 

of foundation models for scATAC-seq, as the success of such models depends on a stable, unified 

representation of input features across diverse datasets. Despite this significant hurdle, the landscape 

has begun to change with the recent emergence of foundation models specifically designed to tackle 

this tokenization challenge.

The first scATAC-seq foundation models: EpiAgent and ChromFound

Foundation models for scATAC-seq data have been scarce. However, this landscape has begun 

to change with the recent emergence of foundation models specifically designed for chromatin 

accessibility data. Within the last nine months, two notable methods have been introduced: EpiAgent62 

and ChromFound63. These models represent the first serious attempts to develop large-scale, pre-

trained foundation models for scATAC-seq analysis, potentially addressing many of the limitations 

faced by previous approaches while leveraging the power of modern deep learning architectures. 

24



However, these models exhibit fundamental architectural limitations that constrain their flexibility 

and applicability. ChromFound explicitly relies on continuous accessibility embeddings rather 

than discrete tokens, sidestepping a crucial architectural innovation of transformers that enables 

interpretability and computational efficiency. EpiAgent, while using discrete cCRE tokens, employs 

a TF-IDF ranking scheme that requires access to the entire cell-by-peak matrix to determine token 

ordering for each individual cell. This matrix-level dependency prevents these models from operating 

on individual cells in isolation, precluding applications such as bulk ATAC-seq analysis, individual 

cell-level queries, or efficient vector database lookups for nearest-neighbor classification. These 

architectural constraints, combined with additional practical limitations, restrict the broader adoption 

and utility of current scATAC-seq foundation models.

tokenizer

"I'll climb the
gargantuan mountain!"

["I'll", "climb", "the", "gar",
"ant", "uan", "mountain"]

natural langauge

tokenizer

ATGATGCTAGTAGCTAGTGCTAGC

['ATG', "ATG", 'CTA', 'GTA',
'GCT', 'AGT', 'GCT', 'AGC']

DNA/k-mers proteomics

tokenizer

MYQTGATH

['M', 'Y', 'Q', 'T', 'G',
'A', 'T', 'H', 'Y', 'P']

transcriptomics

tokenizer

TP53

EGFR

BRCA1

GAPDH
ACTB

M
YC

ENSG00000141510, ENSG00000012048,

ENSG00000146648,ENSG00000111640,

ENSG00000075624, ENSG00000136997

ra
w

 d
at

a
to

ke
n

iz
e

to
ke

n
s [

]

Figure 1.5: Overview of tokenization methods for various modalities.

Limitations of current scATAC-seq foundation models: EpiAgent and ChromFound

Overview of EpiAgent

EpiAgent is a transformer-based foundation model trained on  5 million single cells or  35 billion 

tokens from 31 tissues. The model has about 1.4 billion parameters, divided between an embedding 

module, an 18-layer bidirectional transformer, and a signal decoder. EpiAgent tokenizes cells by 

converting each cell’s accessible cCREs into a “cell sentence,” ranking cCREs by TF-IDF values and 

limiting input length to  8,192 tokens. EpiAgent uses two novel training tasks for pre-training: cell-

cCRE alignment (classifying whether cCREs are accessible given the cell embedding) and signal 

reconstruction (rebuilding accessibility signals from embeddings). The model outputs contextualized 

cCRE embeddings and a [CLS] cell embedding that capture cellular heterogeneity and regulatory 

networks. These representations can be adapted for downstream tasks like unsupervised feature 

extraction, supervised annotation, data imputation, perturbation prediction, batch correction, query 

mapping, and even in-silico cCRE knockout analysis

25



Overview of ChromFound

Similarly, ChromFound is a foundation model specifically designed for scATAC-seq data. It was 

pretrained on 1.97 million cells spanning 30+ tissues and 6 disease conditions, using a massive 1.86 

trillion training tokens. The architecture is hybrid, combining a Window Partition Self-Attention 

(WPSA) module to capture local enhancer–promoter dependencies within ±200 kb of transcription 

start sites and a Mamba block64 for efficient long-range context processing. Its genome-aware 

tokenization encodes each open chromatin region with three components: chromosome identity, 

precise genomic coordinates, and continuous (non-binary) accessibility values. ChromFound is pre-

trained using a masked reconstruction objective that predicts both zero and non-zero accessibility 

values, mitigating sparsity and preserving non-binary regulatory information. The model outputs 

contextualized OCR embeddings and low-dimensional cell embeddings that can be applied in zero-

shot or fine-tuned settings for tasks such as cell clustering, batch correction, cell type annotation, 

cross-omics prediction (inferring gene expression from ATAC), and enhancer–gene link discovery.

Limitations

While both methods have shown promise and broken new ground in the field of scATAC-seq, they 

still suffer from substantial limitations. First, these methods rely on large, cumbersome models that 

exceed 1 billion parameters. This scale rivals even some large language models today, making them 

computationally intractable even with significant compute and GPU resources. Second, these models 

lack accessibility and reusability. ChromFound, to date, remains closed source, making it impossible 

to actually use or evaluate. EpiAgent, while open source, lacks a user-friendly system for accessing 

pre-trained models. The convention in CV and NLP is to share these models through platforms like 

Hugging Face, which neither EpiAgent nor ChromFound do, making fine-tuning on new datasets near 

impossible for most researchers.

Third, and critically, these models exhibit fundamental architectural constraints that limit their 

flexibility. ChromFound uses continuous accessibility values as token embeddings rather than discrete 

tokens, bypassing the interpretability and computational benefits that discrete tokenization provides 

in successful foundation models across other domains. While EpiAgent does employ discrete cCRE 

tokens, its TF-IDF ranking scheme requires the entire cell-by-peak matrix to determine which 

tokens represent each cell and in what order. This matrix-level dependency means the model cannot 

process individual cells in isolation. Consequently, these models cannot be applied to bulk ATAC-seq 

data, cannot perform efficient individual cell queries against vector databases for nearest-neighbor 

classification, and cannot analyze small numbers of cells independently without the full matrix 

26



context. This fundamentally limits their utility for real-world applications where researchers may 

want to analyze a single new sample, compare individual cells, or integrate data incrementally.

Finally, both models produce dense, high-dimensional cell embeddings that lack interpretability and 

explainability. While these embeddings may capture biological variation, they do not provide clear 

insights into which specific regulatory elements or chromatin features drive cellular identity. In 

contrast, a foundation model that combines truly discrete tokenization with cell-level independence 

could achieve comparable performance while enabling direct interpretation of individual tokens, 

supporting flexible deployment across diverse experimental contexts, and dramatically reducing 

computational complexity.

Summary of computational methods for scATAC-seq analysis

Below is a summary of the key computational methods discussed in this chapters:

Table 1.2: Summary of computational approaches for scATAC-seq data

Method Released Description Language Type

chromVar 2017 Quantifies variability in chromatin accessibility 
across TF motifs/k-mers. R Tools

BROCKMAN 2018 Uses gapped k-mers + PCA to capture sequence 
determinants of accessibility. R Tools

scABC 2018 Clusters scATAC-seq by weighted k-means and 
identifies cell-type–specific peaks. R Tools

Cicero 2018 Infers gene activity scores and enhancer–
promoter connections from scATAC-seq. R Tools

cisTopic 2019 Topic modeling (LDA) to uncover regulatory 
programs from accessibility data. R, Python Tools

ArchR 2021 End-to-end scalable scATAC-seq analysis toolkit 
(QC, clustering, peak calling). R End-to-end

Signac 2021 Seurat extension for multi-omic single-cell 
chromatin accessibility analysis. R End-to-end

SnapATAC 2021 Scalable clustering + integration framework for 
scATAC-seq profiles. R End-to-end

EpiScanpy 2021 Extends Scanpy for single-cell epigenomic assays 
(ATAC, DNA meth, etc.). Python End-to-end

SnapATAC2 2023 Rust-backed, optimized reimplementation of 
SnapATAC with high scalability. Python End-to-end

SCALE 2019 Variational autoencoder for scATAC-seq data 
dimensionality reduction. Python Deep learning

scBasset 2022 Sequence-based CNN for scATAC-seq data 
analysis and motif discovery. Python Deep learning

PeakVI 2022 Variational autoencoder with emphasis on batch 
correction and interpretability. Python Deep learning

EpiAgent 2024 Transformer foundation model for scATAC-seq 
analysis tasks. Python Foundation model

ChromFound 2025 Large-scale foundation model for multi-omic 
chromatin accessibility integration. Python Foundation model

27



Improving model sharing, efficiency, and flexibility of scATAC-seq 

foundation models

This dissertation advances the field of scATAC-seq analysis in three distinct ways:

First, it introduces a novel tokenization framework for training and running scATAC-seq models, 

along with a suite of high-performance, Rust-based infrastructure to support these methods, including 

vocabulary builders and fast tokenizers designed to enable highly efficient and scalable data 

processing.

Second, it presents scEmbed, a shallow neural network based on Word2Vec that follows the discrete 

token approach proposed in previous sections to first assess the feasibility of tokenized chromatin 

accessibility modeling. This provides a proof-of-concept for model sharing and the re-use of 

pre-trained genomic region embeddings, thereby streamlining downstream analysis and reducing 

computational overhead. We show that pre-trained region embeddings learned with scEmbed can be 

effectively utilized in various downstream tasks, improving performance and reducing the need for 

extensive retraining.

Finally, it develops Atacformer, a transformer-based foundation model for chromatin accessibility 

that incorporates our novel tokenization strategy and pushes the discrete token approach to its 

limit, analyzing its ability to extract meaningful biological insights at the single-region level. This 

design emphasizes flexibility and efficiency, achieving comparable performance with dramatically 

fewer parameters than existing approaches. Moreover, our new infrastructure facilitates easier 

model sharing and deployment and our discrete token framework enables biological insights and 

interpretability to discover regulatory mechanisms. Together, these contributions provide both 

methodological foundations and practical tools that move the field toward unified, generalizable 

models for single-cell epigenomic analysis.

28



Chapter 2: Background and related work in natural 

language processing (NLP)

Preface

This dissertation explores the intersection of natural language processing (NLP) and single-cell 

chromatin accessibility analysis, focusing on the development of transformer-based transfer learning 

approaches tailored for scATAC-seq data. To contextualize this interdisciplinary approach, it is 

essential to establish a foundational understanding of NLP’s evolution and current state. The field 

of NLP has undergone remarkable transformation over the past decades, progressing from rule-

based systems and statistical methods to the current era of deep learning and large-scale transformer 

architectures. This historical progression not only illuminates the technological advances that make 

modern NLP applications possible but also provides crucial context for understanding how established 

NLP methodologies can be adapted and applied to novel domains such as genomics. By grounding 

this work in NLP’s developmental trajectory, we can better appreciate both the opportunities and 

challenges inherent in transferring language processing techniques to analysis of gene regulation.

The rise of natural language processing

Natural language processing (NLP) has long served as both a proving ground and a catalyst for 

innovations in machine learning. The field’s central challenge — learning meaningful representations 

from sequential data — closely parallels problems found in domains like biology, where genomic 

sequences or chromatin accessibility profiles can be viewed as “languages.” Over the past two decades, 

NLP has undergone a dramatic shift: from early statistical models based on word counts, to distributed 

word embeddings like Word2Vec, to recurrent neural networks and their gated variants, and finally 

to transformers, which have redefined what is possible in sequence modeling. Tracing this trajectory 

illuminates the conceptual breakthroughs that led to today’s foundation models, while simultaneously 

providing the intellectual scaffolding for adapting these methods to biological data such as scATAC-

seq.

This chapter provides a concise overview of key developments in NLP that have shaped modern 

machine learning as well as our own work on genomic interval analysis. We will, in turn, discuss 

the evolution of word embeddings, the advent of attention mechanisms and transformers, and the 

rise of large pre-trained models. By understanding these milestones, we can better appreciate how 

techniques originally designed for human language can be repurposed to decode the “language” of 

genome regulation.

29



Word2Vec and word embeddings

From words to numbers: the challenge of word representation

A core challenge in natural language processing is how to represent words in a way that a machine 

learning model can understand. Fundamentally, a neural network is only capable of processing 

numerical data. This means that before we can apply neural networks to text, we need a way to convert 

words into numbers. Specifically this means converting something like the sentence: "The cat sat 

on the mat." into a numerical format that a neural network can understand. This is not a trivial task, 

as words are discrete symbols that do not have an inherent numerical representation.

One-hot encoding

A simple and intuitive way to represent words numerically is through one-hot encoding. In this 

approach, we first create a vocabulary of all unique words in our dataset. Each word is then represented 

as a vector of zeros with a single one at the index corresponding to that word in the vocabulary. For 

example, if our vocabulary consists of the words ["the", "cat", "sat", "on", "mat"], the word 

"cat" would be represented as such (Figure 2.1A):

[0, 1, 0, 0, 0]

While one-hot encoding is straightforward, it has several limitations. First, it results in high-

dimensional and sparse vectors, especially for large vocabularies. Second, it does not capture 

any semantic relationships between words; for instance, “cat” and “dog” would be represented as 

completely orthogonal vectors despite their semantic similarity. Interestingly, this limitation parallels 

challenges found in single-cell ATAC-seq data, where binary count matrices represent the accessibility 

of genomic regions in a similar one-hot fashion – each cell is represented by a sparse vector indicating 

which peaks are accessible (1) or inaccessible (0). Just as with words, this binary representation fails 

to capture relationships between functionally related genomic regions or cell types. The limitations 

of one-hot encoding motivated the development of more sophisticated representation techniques for 

both natural language and genomic data.

Distributed representations

To address the limitations of one-hot encoding, researchers developed distributed representations, 

also known as word embeddings. In this approach, words are represented as dense vectors in a 

continuous vector space, where semantically similar words are mapped to nearby points. This allows 

the model to capture relationships between words based on their contexts. For example, in a well-

trained embedding space, the vectors for “king” and “queen” would be close to each other, and the 

30



relationship between “king” and “queen” could be represented as a vector offset, such as “king” - “man” 

+ “woman” = “queen” (Figure 2.1B).

The question then becomes: how do we learn these embeddings? One influential method for learning 

word embeddings is Word2Vec, which we will discuss next.

Word2vec

Perhaps one of the most influential methods for learning word embeddings is Word2Vec, introduced 

by Mikolov et al. in 201365. Word2Vec is a shallow, two-layer neural network that is trained to predict 

the context words surrounding a target word in a sentence. There are two main architectures for 

Word2Vec: Continuous Bag of Words (CBOW) and Skip-Gram (SG). In the CBOW architecture, the 

model predicts a target word based on its surrounding context words (Figure 2.1C). Conversely, in 

the Skip-Gram architecture, the model predicts the context words given a target word (Figure 2.1D). 

Both architectures learn to represent words as dense vectors in a continuous vector space, where two 

semantically similar words will have similar vector representations (i.e. be close in the vector space).

Briefly, the training process involves sliding a window over a text corpus and using the words within 

that window to update the word vectors. The objective is to maximize the probability of predicting the 

context words given the target word (or vice versa, depending on the architecture). This is typically 

done using techniques like negative sampling or hierarchical softmax to efficiently approximate the 

softmax function over a large vocabulary66,67.

The actual embeddings are obtained from the weights of the hidden layer after training. Importantly, 

words in the training process are fed to the model as one-hot encoded vectors, but this has the 

consequence of acting as a lookup table to retrieve the corresponding dense embedding vector from 

the hidden layer weights. For example, if we denote the one-hot encoded vector for a word as one-hot 

and the weight matrix of the hidden layer as 𝑊ℎ, the embedding for the word cat can be computed as:

ecat = 𝑊𝑇
ℎ ⋅ one-hot (1)

or,

(



𝑤1,1
𝑤2,1
⋮
𝑤d,1

𝑤1,2
𝑤2,2
⋮
𝑤d,2

…
…
⋱
…

𝑤1,V
𝑤2,V
⋮

𝑤d,V)




⋅

(



0
1
⋮
0)



=

(



𝑤1,1 ⋅ 0 + 𝑤1,2 ⋅ 1 + …+ 𝑤1,V ⋅ 0
𝑤2,1 ⋅ 0 + 𝑤2,2 ⋅ 1 + …+ 𝑤2,V ⋅ 0

⋮
𝑤d,1 ⋅ 0 + 𝑤d,2 ⋅ 1 + …+ 𝑤d,V ⋅ 0)





=

(



𝑤1,2
𝑤2,2
⋮
𝑤d,2)






(2)

Word2Vec embeddings have been highly successful in capturing semantic relationships between 

words and have been widely adopted in various NLP tasks. Extensions and improvements upon 

31



Word2Vec, such as GloVe68, FastText69, and Doc2Vec70 have further advanced the field of word 

embeddings. These methods have laid the groundwork for more complex models, including those 

based on transformers, which we will explore in subsequent sections. However, the critical insight 

from Word2Vec — that words can be meaningfully represented in a continuous vector space 

based on their contexts — remains foundational to modern NLP and our own work on 

genomic interval analysis. Each word gets its own vector in a high-dimensional space, and the 

relationships between these vectors capture semantic similarities and differences. This key concept 

has inspired our analogous approaches in genomics, where genomic regions or chromatin accessibility 

profiles can be embedded in a similar fashion to capture their functional relationships.

Indeed, many methods have been developed that adapt Word2Vec-style embeddings to biological 

sequence data, such as DNA, RNA, and proteins71–73. These approaches treat genes, proteins, or k-mers 

as “words” and biological sequences as “sentences,” enabling the capture of functional and structural 

relationships in a continuous vector space. These methods were made possible by robust and agreed-

upon vocabularies of biological sequences, such as the set of all known genes or proteins in a given 

organism.

the

cat

sat

on

the

mat

word one-hot encoding dense embedding

q
u

ee
n

k
in

g

woman

man

gender

royalty

a b

c

the cat sat on the mat

hidden layer

CBOW

the cat sat on the mat

hidden layer

skip gram
context

project
and
sum

predict target

target

project

predict context

cat the sat on mat

identical
representations

for the
same word

d

Figure 2.1: Different methods for representing words numerically: one-hot encoding vs. distributed 

representations.

a. Schematic of one-hot encoding versus distributed representations for individual words. One-hot encoding 
results in high-dimensional, sparse vectors, and orthogonal representations for different words. Distributed 
representations (embeddings) result in dense vectors where semantically similar words are close in the vector 
space. b. Example of semantic relationships captured by word embeddings, where vector arithmetic can reveal 
relationships such as “king” - “man” + “woman” ≈ “queen”. c. Continuous Bag of Words (CBOW) architecture 

32



of Word2Vec, where the model predicts a target word based on its surrounding context words. d. Skip-Gram 
(SG) architecture of Word2Vec, where the model predicts context words given a target word.

Recurrent Neural Networks and their gated variants

A river bank or a financial bank? Contextual embeddings and their limitations

One of the critical assumptions made with Word2Vec and other word embedding models is that word 

embeddings are context-independent; that is, each word has a single fixed representation regardless 

of its surrounding context. In other words, the embedding for a word like “bank” would be the same 

whether it appears in the context of a financial institution or the side of a river. The word is simply 

“looked up” in the embedding table and used as-is (Figure 2.2A). While this simplification has been 

effective for many NLP tasks, it limits the model’s ability to capture the nuanced meanings of words 

that can change based on context. Instead the embedding for “bank” will be some average of the 

two meanings. This limitation motivated the development of contextual embeddings, which emerged 

first through recurrent neural networks and later evolved into the attention-based architectures that 

dominate today.

Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a class of neural networks designed for processing sequential 

data, making them particularly well-suited for tasks in natural language processing (NLP). Unlike 

traditional feedforward neural networks, RNNs have connections that loop back on themselves, 

allowing them to maintain a hidden state that captures and stores information about previous inputs 

in the sequence. This makes RNNs capable of modeling temporal dependencies and context, which 

are crucial for understanding language.

In a standard RNN architecture, words are still represented using embeddings, such as those learned 

by Word2Vec. However, instead of treating each word independently, the RNN processes the sequence 

of word embeddings one at a time, updating its hidden state at each step. The hidden state serves as a 

memory that captures information about the words that have been processed so far. This allows the 

RNN to generate context-aware representations of words based on their surrounding context in the 

sequence (Figure 2.2B).

Because of this, now if the word “bank” appears in a sentence, the RNN can use its hidden state to 

determine whether the context suggests a financial institution or the side of a river, and adjust its 

representation accordingly. This ability to capture context makes RNNs more powerful than static 

word embeddings for many NLP tasks. Still, simple RNNs often struggled with longer sequences due 

to unstable training dynamics, motivating a series of refinements which we describe next.

33



Long Short-Term Memory (LSTM) networks

While RNNs are capable of modeling sequential data, they suffer from a significant limitation known 

as the vanishing gradient problem. This issue arises when training RNNs on long sequences, where 

the gradients used for updating the model’s weights can become very small, effectively preventing 

the model from learning long-range dependencies in the data. Intuitively, this means that the RNN 

may struggle to “remember” information from earlier in the sequence when making predictions about 

later words because the influence of those earlier words diminishes significantly over time. If we are 

discussing a financial bank, but the word “bank” appears several words later, the model may have 

difficulty connecting the two concepts.

To address this limitation, the NLP community turned to an architecture that had been introduced 

much earlier: the Long Short-Term Memory (LSTM) network (Hochreiter & Schmidhuber, 1997). 

While the original idea dates to the late 1990s, LSTMs gained prominence in the 2010s as sufficient 

computational power became available to train them effectively and the vanishing gradient problem 

proved a major bottleneck for simpler RNNs.

LSTMs are a specialized type of RNN that incorporate a more complex architecture designed to better 

capture long-range dependencies. The key innovation is the introduction of a memory cell and gating 

mechanisms (input, output, and forget gates) that regulate the flow of information. These gates allow 

the network to selectively remember or forget information over long periods, largely overcoming the 

vanishing gradient problem that plagued simple RNNs. Intuitively, this means an LSTM can hold on 

to the “financial” context long enough to correctly interpret the word “bank” when it appears much 

later in a sequence.

The ability to effectively model long-range dependencies unlocked the potential of recurrent models, 

leading to dramatic improvements in applications like machine translation and speech recognition. 

The success of LSTMs spurred further innovation. Simplified variants, such as the Gated Recurrent 

Unit (GRU), were proposed to retain much of the performance of LSTMs while reducing computational 

cost74. Building on these architectures, the sequence-to-sequence (seq2seq) framework demonstrated 

how paired encoder–decoder RNNs could perform end-to-end translation75, and attention mechanisms 

were layered on top to further improve performance76. These developments marked the high-water 

mark of RNN-based NLP systems before the shift toward fully attention-based models.

The success of RNNs and LSTMs in natural language processing naturally extended beyond text 

to other sequential data types, particularly in computational biology. Researchers recognized that 

biological sequences — those like DNA, RNA, and protein sequences — share fundamental similarities 

34



with natural language: they are composed of discrete symbols (nucleotides or amino acids) arranged 

in meaningful sequences where order and context matter significantly. This analogy proved fruitful, 

leading to the application of LSTM architectures for tasks such as gene expression prediction, protein 

function annotation, and DNA sequence classification77,78.

Even still, LSTMs and GRUs have their own limitations. They can be computationally intensive 

to train, especially on very long sequences, and they may still struggle with extremely long-range 

dependencies. Additionally, while RNN-based architectures improved upon static embeddings, they 

were ultimately surpassed by transformer models, which dispense with recurrence entirely in favor 

of self-attention. We turn to those next.

Transformers and attention mechanisms

Transformers

Transformers are a type of neural network architecture that has gained significant popularity in recent 

years, particularly for natural language processing tasks. Introduced in the paper “Attention is All You 

Need” by Vaswani et al. in 201750, transformers leverage a mechanism called self-attention to process 

input sequences in parallel, rather than sequentially as RNNs and LSTMs do. This enables two things: 

first, transformers can capture long-range dependencies in the data more effectively, as there is no 

more “distance” between words in a sequence; and second, they can be trained more efficiently on 

large datasets due to their parallelizable architecture. Specifically, they consume sequences as a whole 

instead of word-by-word, allowing for much faster training times (Figure 2.2C).

the

cat

sat

on
the

mat

RNN

words processed
one at a time

words processed
all at once

model "remembers"
words its seen with

internal state

output word vector
depends on words
that came before

embeddings are changed
and "contextualized"

static word
embeddings

embedding
storage
module

self-attention
matrix

output word vector

W2V

the

cat

sat

on
the

mat

words processed
one at a time

model acts as
a lookup table

the cat sat on the mat

W2V

transformer

a b c

W2V
embedding

storage
module

static word
embedding

Figure 2.2: Evolution of word representation and sequence modeling techniques in NLP: from Word2Vec to 

RNNs to Transformers.

a. Schematic of Word2Vec. It learns word embeddings based on local context windows. The model acts as 
a lookup table for word vectors. b. Schematic of RNNs. They process sequences sequentially, maintaining 
a hidden state that captures information from previous time steps. c. Schematic of Transformers. They use 

35



self-attention to process entire sequences in parallel, allowing for better capture of long-range dependencies. 
Transformers do away with recurrences entirely (i.e. processing one word at a time), instead relying on self-
attention to relate different positions of the sequence.

Self attention

The core innovation of transformers is the self-attention mechanism, which allows the model to weigh 

the importance of different words in a sequence when updating their representations. In self-attention, 

each word in the input sequence is transformed into three vectors: a query vector, a key vector, and 

a value vector. The attention score between two words is computed as the dot product of the query 

vector of one word and the key vector of another word, followed by a softmax operation to obtain a 

probability distribution. This score determines how much attention one word should pay to another 

when updating its representation. The final output for each word is then computed as a weighted sum 

of the value vectors of all words in the sequence, where the weights are given by the attention scores.

Mathematically, the self-attention mechanism is expressed as follows:

Attention(𝑄,𝐾, 𝑉 ) =
𝜎(QK𝑇 )
√𝑑𝑘

⋅ 𝑉 (3)

where Q, K, and V are the matrices of query, key, and value vectors for all words in the sequence, and 

𝑑𝑘 is the dimensionality of the key vectors. The division by √𝑑𝑘 is a scaling factor that helps stabilize 

the gradients during training.

A key thing to note is that in self-attention, each word can attend to all other words in the sequence, 

allowing the model to capture complex dependencies and relationships between words regardless of 

their positions. This is in contrast to RNNs, where the influence of earlier words can diminish over 

time due to the sequential processing.

While powerful, the self-attention mechanism is computationally intensive, especially for long 

sequences, as it requires computing attention scores for all pairs of words. This leads to 𝑂(𝑛2) 

complexity, where 𝑛 is the length of the input sequence.

This complexity resulted in difficulties when scaling up transformers to very long sequences, such 

as entire documents or whole genomic region sets. To address this, various modifications and 

optimizations have been proposed, such as sparse attention mechanisms, which limit the number of 

words each word can attend to, and hierarchical transformers, which process sequences at multiple 

levels of granularity.

36



Approximations of self-attention

After the original transformer architecture was introduced, several variants and improvements have 

been proposed to enhance its performance and efficiency, particularly within the self-attention 

mechanism. We describe some notable examples in turn.

Low-rank & kernel-based approximations

A first class of methods reduces the quadratic cost of self-attention by approximating the attention 

matrix with low-rank or kernel-based decompositions. One example is Linformer, which projects the 

sequence dimension into a lower-rank space, yielding linear complexity while retaining competitive 

accuracy on many NLP tasks79. Similarly, Nyströmformer applies the Nyström method to approximate 

the softmax kernel, further reducing memory usage while scaling to longer contexts80. Finally, 

the Performer model takes a different approach, introducing FAVOR+ random feature maps to 

approximate the softmax kernel directly in linear time81. These methods sacrifice exactness but offer 

strong trade-offs between efficiency and fidelity.

Sparse attention mechanisms

Another approach is to approximate self-attention using sparse matrices, exploiting the intuition that 

not all pairwise interactions are necessary. Sparse Transformer introduced block-sparse patterns to 

limit computations without major accuracy loss82. One example is Longformer, which extended this 

idea with a sliding-window local attention pattern augmented by global tokens for tasks like question 

answering83. Another, BigBird, combined local, global, and random sparse connections, providing both 

empirical scalability and theoretical guarantees of universality84. These structured sparsity patterns 

allow transformers to process sequences with tens of thousands of tokens while retaining exact 

attention within the restricted subsets.

Algorithmic improvements

A final line of work focuses on re-engineering the exact attention operation itself to be more memory 

and bandwidth-efficient. One of the most well-known is FlashAttention. FlashAttention reformulates 

attention as a sequence of IO-aware matrix multiplications, using tiling and recomputation to 

eliminate the need to materialize the full attention matrix in GPU memory85. FlashAttention v2 

further generalized these kernels for both training and inference, showing substantial speedups on 

modern accelerators86. Related libraries, such as xFormers, provide a general framework for fused 

attention kernels with minimal memory overhead. Unlike low-rank or sparse approaches, these 

methods compute attention exactly but achieve significant gains by exploiting hardware efficiency. 

FlashAttention has been widely adopted in large language model training pipelines due to its 

simplicity and effectiveness. Indeed, it is so efficient that it is now often the default attention 

implementation in many deep learning frameworks including PyTorch.

37



From transformers to large language models and beyond

Large language models and foundation models

The transformer architecture laid the groundwork for the development of large language models 

(LLMs), which are typically defined as transformer-based models with hundreds of millions to billions 

of parameters trained on massive text corpora. These models, such as OpenAI’s GPT series45 and 

Google’s PaLM87, have demonstrated remarkable capabilities in generating coherent text, answering 

questions, and performing various NLP tasks with minimal fine-tuning. The key to their success lies 

in their scale and the diversity of data they are trained on, which allows them to learn a wide range 

of linguistic patterns and knowledge.

Building on the success of LLMs, the concept of foundation models has emerged. Foundation models 

are large-scale models trained on broad data at scale and can be adapted to a wide range of downstream 

tasks. They serve as a base upon which more specialized models can be built through fine-tuning or 

prompt engineering. The term “foundation model” emphasizes the idea that these models provide a 

foundational understanding of language that can be leveraged for various applications across different 

domains88.

The development of LLMs and foundation models has also spurred interest in multimodal models 

that can process and generate content across different modalities, such as text, images, and audio. 

Examples include OpenAI’s CLIP44 and DALL-E89, which combine text and image understanding to 

perform tasks like image generation from textual descriptions.

The advancements in LLMs and foundation models have significant implications for various fields, 

including bioinformatics and genomics. By leveraging the principles of transfer learning and the 

ability to learn from large-scale data, researchers can develop models that understand biological 

sequences and structures, enabling new insights and applications in areas such as gene regulation, 

protein folding, and drug discovery. In the following chapters, we will explore how these concepts 

have influenced our approach to analyzing single-cell ATAC-seq data using transformer-based 

architectures.

Summary of NLP techniques

Below is a summary of models and methods from the NLP literature that have been discussed in 

this chapter:

38



Table 2.1: Summary of NLP techniques and models

Method Year Description

One-hot encoding Early Represents words as sparse binary vectors with single 1 at vocabulary index.

Word2Vec 2013 Shallow neural network learning dense word embeddings via context 
prediction.

GloVe 2014 Global vector representations combining matrix factorization with local 
context.

FastText 2017 Extension of Word2Vec incorporating subword information for rare words.

RNN 1980s Recurrent networks processing sequences with hidden state memory.

LSTM 1997 Long Short-Term Memory networks addressing vanishing gradient problem.

GRU 2014 Gated Recurrent Units as simplified alternative to LSTMs.

Seq2seq 2014 Encoder-decoder framework for sequence-to-sequence tasks.

Transformer 2017 Self-attention based architecture processing sequences in parallel.

Linformer 2020 Low-rank approximation of attention for linear complexity.

Longformer 2020 Sparse attention with sliding window and global tokens.

FlashAttention 2022 IO-aware exact attention computation for memory efficiency.

GPT 2018-2023 Generative pre-trained transformer models for text generation.

CLIP 2021 Contrastive language-image pre-training for multimodal understanding.

PaLM 2022 Pathways Language Model demonstrating emergent capabilities at scale.

From words to genomic regions: adapting NLP techniques to gene 

regulation

Building machine learning models for genomic interval data using genomic tokens

Adapting NLP techniques to epigenomic data requires careful consideration of how to represent 

genomic intervals as discrete tokens. Unlike natural language, or even some biological datasets where 

words and tokens are well-defined units with semantic meaning, genomic regions are continuous 

sequences of nucleotides that do not have strong inherent boundaries or meanings. Therefore, to 

leverage NLP models for genomic data, we need to define a suitable vocabulary and tokenization 

strategy.

There is a useful analogy between words in language and regions in the genome: both are 

building blocks that models compose to express higher-order structure. However, the analogy breaks 

down in important ways. First, linguistic tokens arise from shared, largely agreed-upon ontologies 

(morphology, lexicons, grammars) and well-understood segmentation rules. Genomic intervals, by 

contrast, are fluid: regulatory elements, chromatin states, and functional domains overlap, vary in size, 

and lack a single universally accepted partitioning. Second, linguistic tokens have an inherent order 

to them. Genomic regions, while ordered along chromosomes, are rarely analyzed in a temporal or 

strictly sequential context. Instead, their function often depends on 3D conformation, epigenetic state, 

and cell type, complicating the notion of “context” that NLP models typically rely on.

39



Deep learning models are increasingly being developed for genomic interval data, but most treat 

intervals as continuous signals or coordinate-derived features rather than as discrete, reusable tokens. 

Treating genomic regions as tokens offers substantial advantages: compact, shared vocabularies that 

improve parameter efficiency and transfer learning; direct alignment between model components and 

biological entities for clearer mechanistic interpretations; and token-level attribution and attention 

analyses that make model decisions more transparent.

This thesis work formalizes our proposed framework of genomic interval tokens and adapts 

modern NLP architectures to epigenetic data, providing a framework and model suite 

that deliver strong predictive performance while substantially improving interpretability 

enabling biological insights and reducing computational complexity over prior approaches.

40



Chapter 3: Efficient computational tools for creating 

genomic interval vocabularies and tokenization 

frameworks for modern machine learning applications

Nathan J. LeRoy1, 2, Julia Rymuza1, Donald Campbell1, Oleksandr Khoroshevskyi1, Seth Stadick3, Sang-Hoon 
Park1, Edward Chen4, Nathan C. Sheffield1, 2

1Department of Genome Sciences, School of Medicine, University of Virginia, 22908, Charlottesville VA
2Department of Biomedical Engineering, School of Medicine, University of Virginia, 22908, Charlottesville VA
3Life Sciences Group, Bio-Rad Laboratories, 1000 Alfred Nobel Dr, Hercules, 94547, California, USA
4Department of Computer Science, School of Engineering and Applied Sciences, University of Virginia, 22908, Charlottesville 
VA

Note: This chapter is adapted from the following publication and preprint:
(1) Rymuza et al.90, which introduced a comprehensive framework for constructing and evaluating consensus 

genomic interval sets (or “universes”) for machine learning applications; and
(2) LeRoy et al.91, which presented the genomic tokenizers, a high-performance rust library for efficient 

tokenization of genomic interval data into these consensus vocabularies.

Introduction

Advancements in high-throughput sequencing technologies have generated vast and diverse 

epigenomic datasets from assays such as ChIP-seq, ATAC-seq, and Hi-C92. These experiments are 

frequently summarized as genomic intervals, which define regions on a genome. Summarized genomic 

interval data has grown rapidly over the past few years93. This proliferation of data provides a critical 

opportunity to uncover generalizable patterns, support predictive modeling, and enable transfer 

learning using large-scale machine learning (ML) methods. However, major barriers in applying 

modern ML methods to genomic interval data arise due to two fundamental gaps in available tooling: 

1) the lack of systematic methods for creating consensus vocabularies of genomic intervals (vocabulary 

builders), and 2) the absence of efficient, flexible tools for mapping new datasets to these vocabularies 

(tokenizers).

First, genomic interval data is inherently variable and unstructured; each dataset defines its own 

regions of interest, making it difficult to compare or combine results across experiments. This 

is incompatible with ML methods, which generally require data to be described in a discrete, 

consistent vocabulary. For example, in natural language processing (NLP), models require well-

defined vocabularies to process and integrate diverse sets of textual data. The process of mapping 

new, unseen datasets to a shared feature set is called tokenization and is a vital part of NLP research 

and development59–61,94. Without such a standardized basis, it is difficult or impossible to create 

feature-aligned representations suitable for ML. Similarly, for genomic intervals, it is necessary to 

41



map new datasets to a shared vocabulary, or consensus set of genomic intervals90,93. This process 

is conceptually similar to tokenization in NLP and serves the same purpose: to enable consistent 

and scalable representation of variable input data. However, creating these consensus vocabularies 

remains largely ad hoc and manual. While methods exist for generating consensus peak sets or 

reference interval collections, they are typically designed for specific analyses rather than systematic 

vocabulary creation for ML applications. Most approaches rely on simple binning, intersection or 

merging strategies95–97 without considering the downstream requirements of machine learning models, 

such as vocabulary size constraints, feature importance, or cross-dataset generalizability. This gap 

leaves researchers to develop custom, often suboptimal solutions for each project.

Second, even when consensus vocabularies exist, the tools for efficiently mapping genomic intervals 

to these shared feature sets are inadequate for modern ML workflows. Specifically, while tools exist for 

genomic interval comparison98–102, they are limited in several ways. They are typically only accessible 

in a single environment, such as R, or as command-line tools, and are not optimized for fast, in-memory 

processing. This limitation poses a significant pain point for machine learning pipelines in Python, 

which require high-throughput, efficient data handling. Additionally, they generally lack flexible APIs 

that integrate seamlessly in the Python-based machine learning ecosystem, particularly with libraries 

like PyTorch, TensorFlow, or huggingface/transformers. As a result, ML applications in genomics often 

suffer from ad hoc preprocessing steps, pipeline bottlenecks, and limited scalability.

To solve these problems, we created gtars, a comprehensive library designed specifically for genomic 

machine learning that addresses both gaps, and geniml, a toolkit for generating consensus peak sets for 

genomic machine learning models. For vocabulary creation, we provide gtars-uniwig (referred to as 

uniwig), a pre-processing tool for systematic consensus set generation that serves as the first necessary 

and compute-intensive preprocessing step for our downstream vocabulary builders. For tokenization, 

we developed gtars-tokenizers, which provides four main improvements: First, its Rust core makes 

it faster than many existing tools, and in many cases, as fast as the fastest available implementations. 

Second, it is designed for convenience for ML, exposing a direct bridge into modern ML infrastructure 

such as HuggingFace and PyTorch, so genomic intervals can be tokenized and passed into models 

without ad hoc preprocessing. Third, unlike prior utilities, it treats genomic intervals in a way that 

mirrors the conceptualization of words in NLP, enabling consistent, vocabulary-based representations 

that scale across datasets. Finally, it offers a unified engine with bindings for Python, R, Rust, command 

line, and web applications so the same foundation can serve diverse users and workflows.

42



These tools are essential components for establishing robust and modern ML workflows for genomic 

interval data. The standardization and efficiency they provide are critical for scaling genomic machine 

learning beyond individual experiments to large-scale, multi-dataset analyses. By addressing both 

vocabulary creation and tokenization systematically, gtars enables researchers to focus on model 

development and biological insights rather than wrestling with data preprocessing challenges. In the 

following sections, we describe these tools in turn, demonstrating how they work together to bridge 

the gap between genomic data and machine learning infrastructure.

Results

BED
BED

BED
BED

BED

data sources

scATAC-seq

ATAC-seq

uniwig

CC(F) universe

LH universe

HMM universe

coverage tracks
si

gn
al

si
gn

al
si

gn
al

genome

starts, cores, and ends
coverage tracks

.bigWig 

.bigWig 

.bigWig 

coverage

b

coverage-based universes

c

flexible region

likelihood universe

scoring
matrix

signal

HMM universe

emissions

hidden
state

H
M

M

signal

ge
start, end, and coverage signal

si
gn

al
co

ll
ec

ti
on

co
ll

ec
ti

on

coverage

co
ll

ec
ti

on

flexible coverage cutoff universe

d

flexible

sstart send estart eend

s e

co
ll

ec
ti

on

fixed

re
gi

on

a

f

BED

BED

BED

universe creation

Figure 3.1: Overview of uniwig and the universe creation tools.

a. Schemtic overview of the uniwig process. The tool takes as input a set of BED files and will output coverage 
tracks for the cores starts and ends. b. Coverage-based universes are derived from the genome coverage of a 
collection of region sets. Examples include intersection 𝑈𝑖, coverage cutoff 𝑈CC, and union universe 𝑈union. c. 
A flexible region in contrast to fixed region can represent boundaries of many variable regions. d. The flexible 
coverage cutoff (CCF) universe is based on coverage of the genome by a collection. It uses two cutoff values: 
the lower defines flexible boundaries and the upper defines the region core. e. A collection of genomic region 
sets is aggregated, and region starts, core (overlap), and ends are counted, creating signal tracks. .f Maximum 
likelihood universe is derived from three signal tracks. Using a likelihood model, we build a scoring matrix 
that assesses the probability of each position being a given part of a flexible region. Next, we find the most 
likely path, which represents the maximum likelihood universe. g. The HMM universe treats signal tracks 
representing genome coverage by different parts of a region as emissions of hidden states that correspond to 
different parts of flexible regions.

43



Creating a principled vocabulary for genomic intervals

The creation of a principled vocabulary for genomic intervals requires a systematic two-step process. 

First, input genomic interval datasets (typically BED files) are processed using uniwig to generate 

standardized coverage tracks representing interval starts, cores, and ends across the genome. Second, 

these coverage tracks are then processed through one of four universe construction methods—

coverage cutoff (CC), flexible coverage cutoff (CCF), maximum likelihood (LH), or Hidden Markov 

Model (HMM)—to generate the final consensus genomic interval set that serves as the vocabulary for 

machine learning applications (Figure 3.1A, See methods).

Overview of uniwig: a pre-processing tool for consensus genomic interval set 

construction

The first step when building a machine learning model for genomic intervals is to define a universe 

of intervals that will serve as the vocabulary for the model. This universe should comprehensively 

cover the genomic regions relevant to the biological context of interest, such as regulatory elements 

in a specific cell type or tissue. The universe is typically represented as a BED file containing genomic 

coordinates. Once the universe is defined, new datasets can be tokenized by mapping their intervals to 

the nearest or overlapping regions in the universe, converting them into a format suitable for machine 

learning models.

To facilitate this process, we developed uniwig, a high-performance tool in rust that computes 

the coverage of genomic intervals across multiple datasets and generates a unified representation. 

uniwig takes as input a set of BED files representing genomic intervals from different experiments 

and computes three single coverage .bigWig files, one for the starts, the cores, and the ends of the 

intervals. This representation captures the distribution of intervals across the genome and can be used 

to identify regions that are consistently covered across datasets. The output .bigWig files can then 

be used as input for downstream analysis or as part of the vocabulary creation process (Figure 3.1A, 

See methods).

Simple coverage-based universe construction

Once the coverage files are generated, they can be used to create a consensus set of genomic intervals 

that will serve as the vocabulary for machine learning models. The simplest method for constructing 

a consensus genomic interval set is to use coverage information directly. This approach involves 

computing the coverage of genomic intervals across all input datasets and applying a threshold to 

define which regions should be included in the final universe. One can apply either a fixed coverage 

cutoff (CC), an intersection, or a union of all input datasets to define the universe (Figure  3.1B). 

However, one limitation of this approach is that it treats each interval as a binary event (present or 

44



absent), which may not capture the full complexity of the data, especially when intervals vary in 

length or when there are differences in the number of intervals across datasets. For this, we consider 

methods that consider flexible regions – that is, regions with a start, core, and end – to better capture 

the underlying biological signals (Figure 3.1C).

Novel methods for constructing consensus genomic interval sets

To improve upon simple coverage-based approaches, several advanced methods have been developed 

within our group, with the definitive framework and evaluation published by Rymuza et al. (2024). In 

summary, we provide three methods for generating these consensus sets, each with its own advantages 

and trade-offs: 1) coverage cutoff (CC) universe, 2) maximum likelihood (LH) universe, and 3) the HMM 

universe. These methods were developed by our group and others90, and each is suited to different 

scenarios depending on the characteristics of the input data and the desired properties of the resulting 

universe. We briefly summarize each method below (See methods for more details).

Coverage Cutoff Flexible (CCF) Universe

This method treats a collection of flexible genomic region sets as a single coverage signal track across 

the genome. It then applies a coverage threshold, or cutoff, to this track. Any genomic position where 

the coverage is greater than or equal to the chosen cutoff is included in the final universe. This 

approach is straightforward and allows for easy control over the size of the universe by adjusting the 

cutoff value. However, it may not capture all relevant regions, especially if the input datasets are highly 

variable or if some regions are only present in a few datasets (Figure 3.1D, Figure 3.1E). This approach 

is a hybrid between simply taking the union of all regions (a cutoff of 1) and taking the intersection 

(a cutoff equal to the total number of region sets). The method provides a tunable parameter that can 

be adjusted based on the needs of the analysis.

Maximum Likelihood (LH) Universe

The Maximum Likelihood (LH) universe was designed to better preserve the boundaries of individual 

regions and avoid merging adjacent regions, which can be an issue with simple coverage-based 

methods. Instead of just using coverage, this method calculates three separate signal tracks at base-

pair resolution: one for region starts, one for region ends, and one for coverage (core). It then uses 

a likelihood model to calculate the probability of each genomic position being a start, core, or end 

(Figure 3.1F). The final universe is determined by finding the most likely path of these states (start, 

core, end) across the genome.

Hidden Markov Model (HMM) Universe

Lastly, the Hidden Markov Model (HMM) approach is a more tunable and sophisticated version of 

the likelihood model. It models the genome as a sequence of hidden states (e.g., region start, core, 

end, or background). The three signal tracks (starts, ends, coverage) are treated as emissions, or 

45



observations, generated by these hidden states. The key advantage is that a user can adjust the 

model’s transition probabilities (the likelihood of moving from one state to another) and emission 

probabilities to fine-tune the resulting universe, for example, to prevent unnecessary fragmentation 

of regions (Figure 3.1G).

This framework established by Rymuza et al.90 provides a systematic approach to constructing 

consensus genomic interval sets that can be tailored to the specific needs of different machine learning 

applications. By leveraging the coverage information from multiple datasets, these methods enable the 

creation of robust and biologically meaningful vocabularies that facilitate the application of machine 

learning techniques to genomic interval data.

Building on this comprehensive evaluation framework, Rymuza et al.90 conducted systematic 

benchmarking across multiple genomic datasets to assess the performance of these universe 

construction methods in downstream machine learning applications. Their analysis revealed 

that the HMM universe consistently outperformed simpler coverage-based approaches and the 

maximum likelihood method across various evaluation metrics, including model accuracy, feature 

interpretability, and biological relevance of the resulting vocabularies (Supplementary Figure A.1).

Having established methods for creating consensus vocabularies, the next challenge is efficiently 

mapping new genomic datasets to these standardized feature spaces. This process — analogous to 

tokenization in natural language processing — requires specialized tools optimized for the scale and 

performance demands of modern machine learning workflows.

ba c

NLP tokenizer

core implementation in rust

language-specific bindings

"I'll climb the
gargantuan mountain!"

['i', "'", 'll', 'climb',
'the', 'ga', '##rgan', '##tua',

'##n', 'mountain', '!']

ra
w

vocab

to
ke

n
iz

ed

tokenization

d

SCREEN 1M SCREEN 100K SCREEN 10K

T
im

e 
(s

ec
on

ds
)

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e 
(s

ec
on

ds
)

0.0
104 105

0.2

0.4

0.6

0.8

1.0

T
im

e 
(s

ec
on

ds
)

0.0

0.2

0.4

0.6

0.8

1.0

104 105 104 105

Number of regions in queryNumber of regions in query Number of regions in query

bedtools
bedops
bedtk
gtars/bits

gtars/ailist

bedtools
bedops
bedtk
gtars/bits

gtars/ailist

bedtools
bedops
bedtk
gtars/bits

gtars/ailist

Figure 3.2: Overview and benchmarking of gtokenizers, a Rust-based library for genomic interval tokenization.

46



a, Schematic of natural language tokenization. NLP tokenizers typically break sentences up into words 
or word-pieces. b, Schematic illustrating gtokenizers applied to regulatory elements (e.g., cCREs) for 
standardized interval representation. c, Architecture of gtokenizers, with a core implementation in Rust and 
support for multiple language bindings (e.g., CLI, R, Python, WebAssembly). d, Runtime benchmarking across 
three query sizes (1M, 100K, 10K regions) against existing tools (bedtools, bedops, bedtk) and Rust-based 
implementations (gtars/bits, gtars/alist), demonstrating scalability and performance.

Overview of genomic interval tokenizers

Modern deep‑learning workflows in natural language processing require tokenizers to convert new 

text into the model’s fixed vocabulary, enabling consistent inputs for downstream processing. Tokens 

in language models correspond to discrete words or subword units (Figure  3.2A). In the genomic 

domain, a comparable process is necessary: machine learning models that treat genomic intervals 

as discrete units, like words in a sentence, must map each dataset to a common set of regions, 

or a vocabulary for genomic intervals90,103–106 This vocabulary ensures data across experiments are 

represented in a standardized, comparable way (Figure 3.2B). Different datasets can thus be interpreted 

with the same model architecture and feature space, just as diverse text inputs are aligned via 

tokenization in NLP.

We implemented two overlap methods in gtars-tokenizers: gtars/bits, which uses binary 

interval tree search (BITS)107, and gtars/alist, which uses an Augmented Interval List (AIList)101 

(see methods). Both methods are implemented in Rust for performance and memory efficiency. To 

maximize flexibility and usability, we provide bindings for gtars/tokenizers in Python, R, and 

WebAssembly, as well as a command-line interface (CLI) (Figure 3.2C). This allows users to integrate 

genomic interval tokenization into their existing workflows, whether they are using Python-based 

machine learning libraries like TensorFlow or PyTorch, R-based bioinformatics tools, or require a web-

based solution for use in a browser (see methods).

Gtars tokenizers are highly performant

To highlight the performance of gtars/tokenizers, we benchmarked it against existing tools for 

genomic interval tokenization (see methods). We compare gtars/tokenizers to bedtools, bedops, 

and bedtk98–100. These tools focus on general-purpose genomic interval arithmetic and are not 

optimized for machine learning applications. We found gtars/tokenizers to be consistently as fast 

or faster than existing tools (Figure 3.2D). For large universes with >1 million intervals (like those 

used in genomic interval machine learning), gtars-tokenizers is around 2- 3x faster than bedtools 

and bedops, while being comparable to bedtk. This pattern holds across different query sizes (1M, 

100K, and 10K regions), demonstrating the scalability and performance of gtars/tokenizers.

47



Gtars tokenizers work seamlessly with modern machine learning infrastructure

The gtars-tokenizer implementation is compatible with the Hugging Face tokenizers API, enabling 

seamless integration with the broader Hugging Face ecosystem. The gtars tokenizers are near-drop-in 

replacements for existing Hugging Face tokenizers, meaning users can pass them to the HuggingFace 

transformers package functions and classes using the same ergonomics as a standard NLP workflow. 

The consistent interface makes it easy for ML engineers to adapt to training models on genomic 

interval data. It also means that the downstream outputs of the training process will seamlessly 

integrate with popular downstream frameworks and tools that rely on the Hugging Face tokenizers 

standard, such as PyTorch Lightning, AllenNLP, and evaluation libraries like Evaluate, PEFT, and 

Weights & Biases. To highlight this, we provide a brief example of how someone can use our tokenizers 

to preprocess data for a simple neural network built with PyTorch. The snippet first creates a new 

tokenizer from a BED-file, and then uses it to preprocess data for a neural network.

import torch
import gtars.tokenizers as Tokenizer

tokenizer = Tokenizer.from_bed("path/to/bed/file.bed")
network = torch.nn.Embedding(tokenizer.vocab_size, 64)

query_intervals = [("chr1", 1000, 2000), ("chr2", 3000, 4000)]
tokens = tokenizer.tokenize(query_intervals)["input_ids"]
out = network(torch.tensor(tokens))

Gtars tokenizers are available in a wide array of computing environments.

To maximize usability, we expose the Rust core of gtars-tokenizers as a Rust library crate, as a 

command-line tool, with R bindings, Python bindings, and for WebAssembly (WASM). This broad 

set of interfaces ensures that the same high-performance engine can serve diverse communities 

– from machine learning researchers to bioinformaticians and end-users in web tools – without 

duplicating functionality or compromising performance. It also reduces maintenance requirements 

for the community because a single fast interface can be deployed in many situations.

Discussion

The gtars and geniml project provides a suite of high-performance tools designed to bridge the gap 

between raw genomic interval data and modern machine learning workflows. We address two of the 

most significant bottlenecks in the field: the ad hoc nature of vocabulary creation and the inefficiency 

of tokenization.

First, by providing uniwig and companion universe creation methods, we establish a systematic and 

reproducible foundation for building consensus genomic interval sets. This high-performance pre-

processing engine enables the practical application of sophisticated universe construction methods, 

48



such as the LH and HMM approaches. This moves the field beyond simplistic merging or binning 

strategies and toward the creation of robust, biologically meaningful vocabularies that are tailored for 

machine learning applications.

Second, the gtars-tokenizers library provides the critical link between these vocabularies and the 

ML ecosystem. Its fast, unified interface makes it easy to integrate into popular ML packages like 

Hugging Face and PyTorch, and it is also highly useful for traditional applications of interval overlap 

arithmetic. By providing a fast, ML-aware abstraction, gtars-tokenizers helps move the field beyond 

tool-specific pipelines toward interoperable, general-purpose models of genome function.

Together, these components create a synergistic workflow. Principled vocabularies are of little use 

without an efficient tool to map to them, and a high-performance tokenizer is ineffective without 

a well-defined vocabulary. New tools like gtars that address the full pipeline will be an important 

part of the evolving ecosystem that promotes fast, reproducible analysis on genomic regions. Future 

work that extends this entire approach—from universe creation to tokenization—to other data types 

like fragments, AnnData objects, bulk ATAC-seq, or even SNPs could reshape how we represent and 

analyze the genome.

49



Chapter 4: Fast clustering and annotation of scATAC-seq 

data using pretrained region embeddings

Nathan J. LeRoy1,2, Jason P. Smith1,3,4, Guangtao Zheng5, Julia Rymuza1, Erfaneh Gharavi1,6, Donald E. Brown6,7, 
Aidong Zhang2,5,6, Nathan C. Sheffield1,2,3,4,5,6,8

1Department of Genome Sciences, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
2Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, VA 22904, USA
3Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, 
USA
4Child Health Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
5Department of Computer Science, School of Engineering, University of Virginia, Charlottesville, VA 22908, USA
6School of Data Science, University of Virginia, Charlottesville, VA 22904, USA
7Department of Systems and Information Engineering, University of Virginia, Charlottesville, VA 22908, USA
8Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA

Note: This chapter is adapted from the following publication:
LeRoy et al.106, which introduced scEmbed, a method for fast clustering and annotation of scATAC-seq data 

using pretrained region embeddings.

Introduction to scEmbed

Data from the single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) is 

now widely available. This data is used to uncover complex regulatory networks at the single-cell level, 

elucidating the cellular mechanisms that drive cell-to-cell heterogeneity. The power of scATAC-seq 

data has motivated the development of new computational approaches for its analysis27,30,31,34,35,39–41,108–

111. Despite these advances, scATAC-seq analysis continues to face two key challenges: the 1) high 

dimensionality and 2) inherent sparsity of the data112,113.

scATAC-seq analysis often includes two critical tasks: 1) dimensionality reduction followed by 

clustering and 2) cell-type annotation of cell clusters. For the dimensionality reduction task, numerous 

methods have been developed, such as SCALE and scBasset, which use variational autoencoders 

and convolutional neural networks to learn low-dimensional representations of single cells for 

downstream clustering tasks39,41. Other methods include ChromVAR, cisTopic, SnapATAC, and ArchR, 

which leverage latent semantic analysis (LSI) and topic modeling to cluster individual cells27,30,35. 

These methods usually require complex processing pipelines and large compute power. The second 

task, cell-type annotation, is less well-served, with most current methods simply repurposing cell-

type annotation tools from scRNA-seq114. Methods developed for scATAC are few and suffer notable 

limitations. First, they mainly take a cross-modality approach, integrating data from reference scRNA-

seq sets, so they are limited in relying on a secondary data modality. Finding an appropriate secondary 

dataset to complement the unlabeled set can be difficult115. Second, many supervised methods – 

50



while powerful – require model training to predict cell types from a fixed output. This can make 

the discovery of novel cell types a challenge111. Finally, these methods are notoriously compute-

intensive116, a limitation that has grown more problematic as atlas-level datasets have emerged. This 

problem is further compounded by the fact that many researchers seek to integrate multiple scATAC-

seq datasets, which can be computationally prohibitive with current methods.

Here, we address these challenges with an alternative approach to scATAC-seq dimensionality 

reduction and cell-type annotation using pre-trained embedding models. As discussed in previous 

chapters, the development of foundation models for scATAC-seq has been hindered by the lack of 

standardized vocabularies and the challenge of creating meaningful token representations for genomic 

regions. A natural first step toward building such foundation models is to investigate whether genomic 

regions can be effectively represented as discrete token embeddings, analogous to word embeddings 

in natural language processing. scEmbed explores this foundational question by learning fixed, 

low-dimensional representations of genomic regions that can be shared across datasets, validating 

the discrete tokenization approach and establishing baseline performance for transfer learning in 

chromatin accessibility analysis.

Our method improves both dimensionality reduction and cell-type annotation by significantly 

reducing the computational time and complexity of these workflows with the added benefit of 

leveraging information from high-quality reference datasets. Instead of analyzing datasets end 

to end, we use unsupervised learning to model the patterns of regulatory region co-occurrence 

in high-quality reference datasets, and then transfer this knowledge to new, unseen data. We 

implemented this method in scEmbed, an unsupervised machine-learning method that learns low-

dimensional representations of genomic regions from scATAC-seq datasets. We first show that 

scEmbed performs as well as established methods for dimensionality reduction and clustering while 

maintaining robustness to data loss. Moreover, by leveraging models pre-trained on reference data, 

scEmbed drastically reduces the time and complexity of scATAC-seq analysis with little to no loss 

in clustering performance. Finally, we build a novel cell-type annotation system by exploiting the 

learned embeddings produced by pre-trained embedding models without needing any external data 

modalities. Our system can accurately annotate unseen data in seconds using pre-trained reference 

models. scEmbed takes a new approach to scATAC-seq analysis by focusing on ATAC-seq data alone, 

while building high-quality embeddings of genomic regions en route to single-cells, which offers 

flexibility and speed for a wide range of downstream tasks.

51



Results

Overview of the scEmbed architecture

a b

Word2Vec

scEmbed

the cute cat over the dogContext

Predict

Context

Predict

chr3:345-745

chr2:920-1120

isolate single cells

ATAC-seq
binary accessibility 

matrix

lists of co-accessibile 
regions as one-hot 

encoded vectors

Cells

shuffle region lists train model

c

UMAP1

U
M

A
P

2

vector average

region embeddings

overview of training task overview of training pipeline

r1:

r2:

r3:

r4:

r5:

region embeddings

producing cell embeddings from region embeddings
CD8+ T Cells

B Cells

NK Cells

ce
ll

s

regions

ce
ll

s

regions

ce
ll

s

regions

r1
r2
r3
r4
r5

Cells

r1
r2
r3
r4
r5

Cells

r1

r2
r3

r4

r5

jumps

chr1:1023-1123

d

scEmbed

SCALE

scBasset UMAP1

U
M

A
P

2

HC Kmeans Louvain

Kmeans
Louvain

HC

overview of evaluation pipeline

3. Evaluate results using 
ARI, AMI, and homogeneity2. Cluster cell embedings1. Apply scATAC-seq data

to analysis methods

Figure 4.1: An overview of the scEmbed architecture and training procedure.

a. scEmbed leverages Word2Vec as its core model. Word2Vec learns to predict words given a semantic context. 
Similarly, scEmbed learns to predict genomic regions, given a genomic context. This is unsupervised, and 
uses the patterns of genomic region co-occurrence to learn representations of individual regions. b. Overview 
of the scEmbed learning process, starting with scATAC-seq data. c. Once region embeddings are learned, 
they can be used to construct cell embeddings by averaging the embeddings of regions accessible in each cell. 
We use cell embeddings for downstream tasks of clustering and cell-type prediction. d. Diagram showing 
three steps of the benchmarking process

To build a novel neural network that can learn dense, low-dimensional vectors of genomic regions, 

we designed scEmbed. scEmbed adapts our previous work, Region2Vec103, to single cells. The model 

is a modified unsupervised Word2Vec65 model that learns to predict genomic region co-accessibility 

similarly to Word2Vec (Figure 4.1A). scEmbed consists of a single embedding layer followed by a 

context prediction layer for training. Briefly, scEmbed treats each cell as a document and its accessible 

regions as words. Context is simulated by repeatedly shuffling these regions (Figure  4.1B). We 

experiment with both skip-gram (SG; predicting context regions given a target region) and continuous 

bag-of-words (CBOW; predicting a target region given its context) training objectives. After training, 

we are left with a set of region embeddings; one for each genomic region in the model vocabulary. To 

52



construct cell embeddings, we average region embeddings for each cell, which are then used for tasks 

like clustering, analysis, or transfer learning (Figure 4.1C).

To validate scEmbed, we followed an earlier approach112 by Chen et. al. to benchmark the model on 

clustering tasks using published reference scATAC data. We experiment with a diverse set of both real 

and simulated scATAC-seq datasets with known and unknown cell-type labels. These embeddings 

are clustered using three clustering methods: K-means, hierarchical clustering (HC), and Louvain 

clustering. The clusters are then subjected to evaluation using established metrics (Figure  4.1D) 

– namely adjusted mutual information (AMI), adjusted rand index (ARI), and homogeneity (see 

Methods). Finally, we explore the potential of scEmbed for transfer learning tasks like cell clustering 

and cell-type annotation by repurposing existing models.

scEmbed is competitive with existing scATAC-seq methods

a b

HC
HC

HC K Means Louvain

Cice
ro

G
eneS co

rin
g

sc
ABC

BRO
CKM

AN

S ca
sa

t

Chro
m

VAR

S CALE

sc
Em

bed

S napATA
C

sc
Bass

et

cis
To

pic

Cice
ro

G
eneS co

rin
g

sc
ABC

BRO
CKM

AN

S ca
sa

t

Chro
m

VAR

S CALE

sc
Em

bed

S napATA
C

sc
Bass

et

cis
To

pic

Cice
ro

G
eneS co

rin
g

sc
ABC

BRO
CKM

AN

S ca
sa

t

Chro
m

VAR

S CALE

sc
Em

bed

S napATA
C

sc
Bass

et

cis
To

pic
0 .0

0 .2

0 .4

0 .6

0 .0

0 .2

0 .4

0 .6

0 .0

0 .2

0 .4

0 .6

Buenrostro 2018
clustering perfomance comparisom

c d

20% 40% 60%

20% 40% 60%

20% 40% 60%

0.50

0.55

0.60

0.65

0.35

0.40

0.45

0.550

0.575

0.600

0.625

0.650

Dropout rate

HC

K means

Louvain

H
om

og
en

ei
ty

A
R

I

Homogeneity
ARI
AMI

Dropout: 30% Dropout: 40% Dropout: 50%

Dropout: 60% Dropout: 70% Dropout: 80%

A
M

I

UMAP 1

U
M

A
P

 2

dropout experiments

M
et

ri
c 

va
lu

e

Figure 4.2: Benchmarking shows that scEmbed is competitive with existing approaches.

a. UMAP plot of the Buenrostro2018 dataset cell-embeddings produced by scEmbed. b. Results of the 
benchmarking pipeline. scEmbed is competitive with the top methods. We tested three clustering methods: 
Hierarchical clustering (HC), K means, and Louvain. The clustering results were evaluated using three 
metrics: Adjusted mutual information (AMI), adjusted rand index (ARI), and homogeneity. c. UMAP plots 

53



visually showing the resultant clusters of cell embeddings produced by scEmbed following data loss. d. Line 
plots showing the change in three clustering metrics (ARI, AMI, and Homogeneity) as a function of dropout 
rate. Plots show that scEmbed retains its ability to accurately cluster single cells up to nearly 80% data loss.

When benchmarked against Buenrostro2018117, scEmbed visually clusters cells of the same type. 

(Figure 4.2A). scEmbed performed similarly to the best-performing scATAC-seq methods, including 

SCALE, scBasset, cisTopic and SnapATAC (Figure 4.2B). This performance was achieved with minimal 

preprocessing of the data and a completely unsupervised learning workflow. In addition to the 

Buenrostro2018 dataset, we also benchmarked scEmbed on another, more recent and comprehensive 

scATAC-seq dataset from Luecken et al.118. Again, comparing clusters with ground truth labels, 

scEmbed performs well (Supplementary Figure A.2).

scEmbed is robust to data loss

Next we wondered if we could leverage scEmbed for transfer learning tasks, which can result in a 

loss of information. As such, we sought to evaluate its ability to cluster data with increasing levels of 

information loss. To test scEmbed’s robustness to missing data, we trained the model on datasets of 

increasing sparsity. Starting with the Buenrostro2018 dataset (2.8% non-zero entries)117, we randomly 

dropped non-zero values in the binary accessibility matrix until approximately 80% of the initial non-

zero data was lost. A dropout rate of 80% resulted in a matrix that was 0.5% non-zero. Even at a drop-out 

rate of 80%, scEmbed was able to visually cluster cells of the same type (Figure 4.2C). To quantify this, 

we computed the same three clustering scores for each dropout dataset: 1) Adjusted Rand Index (ARI), 

2) Adjusted Mutual Information (AMI), and 3) Homogeneity scores. We found that scEmbed retained 

clustering accuracy comparable to other scATAC-seq analysis methods112 even when faced with 80% 

data loss (Figure 4.2D). These findings confirm that scEmbed can learn rich biological knowledge, even 

for the most sparse datasets. We hypothesize that this robustness arises from the model’s ability to 

capture redundant regulatory information across genomic regions. Even with substantial data loss, the 

remaining accessible regions likely contain sufficient co-accessibility patterns to maintain the learned 

relationships between functionally related regulatory elements. The ability to handle sparseness is a 

critical characteristic of scATAC-seq analysis, and particularly so for scEmbed, which can be used to 

transfer information from existing models, as we describe next.

54



Using scEmbed to transfer knowledge of genomic region co-occurrence to unseen 

datasets

r1 r2 r3 r4

r1

r1

r3 r4 r5

... r5

r1 r3... r4r2

a

...

using projectiontraining from scratch

r3

r4

r5

ce
ll

s

regions

...
b

c d

U
M

A
P

 2

U
M

A
P

 2

UMAP 1UMAP 1

resulting tokens

embedding average

tokenized cell

all regions in
reference model

universe

new cell
co-accessible

regions

reference used
to train model

query we
want to get

embeddings for ce
ll

s
regions

HC K Means Louvain

P BMC P BMC (proj)

R
A

G
I

0.00

0.05

0.10

0.15

Figure 4.3: scEmbed enables knowledge transfer to unseen datasets.

Transfer learning with scEmbed occurs in three steps. a. Diagram of overlap analysis depicting how a new cell 
from a new dataset (blue) is tokenized into the feature space of the data used for the pre-trained model (red). 
b Diagram showing the computation of embeddings for new, unseen data. This is achieved using average 
pooling of region embeddings. c. UMAP plots of both projected (right) and unprojected (left) datasets. The 
plots show nearly identical clustering of embeddings learned from the original dataset versus projection. d. 
RAGI score plots for both the original dataset embeddings and projected cell embeddings. RAGI scores are 
computed for three clustering methods: Hierarchical clustering, K-means, and Louvain.

A key innovation in scEmbed is its two-step training process, rather than the common single-step 

approach. In the first step, scEmbed learns embeddings of genomic regions rather than cells. In the 

second step, these region embeddings are aggregated to construct cell embeddings. This decoupled 

architecture enables a critical capability: the learned region embeddings can be reused to generate 

embeddings for entirely new datasets that the model has never seen, allowing scEmbed to leverage 

knowledge from pre-trained reference models (Supplementary Figure A.3). We call this process of 

using a pre-trained model to generate embeddings of new data “projection”.

We next sought to assess this projection process by asking whether scEmbed could cluster a new 

dataset based entirely on a pre-trained model. Put another way, we wanted to ask: how well can 

scEmbed cluster cells when we re-use a model we just trained for brand new dataset? To assess this, first, 

we trained a model on the original Buenrostro2018 dataset117; second, we took a new dataset, 10X 

genomics 5k PBMCs from a healthy donor, and tokenized each cell’s regions into the original models 

vocabulary (Figure 4.3A), followed by region pooling via average pooling (Figure 4.3B). Tokenization 

55



is a critical step in this process and involves mapping the genomic regions of the new dataset to those 

in the vocabulary of the pre-trained model (see Methods).

We used these single-cell embeddings directly for UMAP visualization and clustering analysis. To 

assess the quality of the projection, we assumed that  8 distinct cell populations existed and took 

advantage of marker gene analysis to assign labels to each cell. We use the Residual Average Gini Index 

(RAGI) score to evaluate the clustering ability of scEmbed112 which enables us to assess clustering 

performance when ground truth labels are unknown (see Methods). We found that the projected cell 

analysis showed no marked differences in clustering proficiency when compared with the embeddings 

produced by conventional model training. The UMAP plots were visually similar (Figure  4.3C), 

indicating similar clustering performance.

To further explore the difference, we next evaluated clustering performance using a repeated 

subsampling strategy that consisted of four steps: (i) train a new model on the PBMC data alone; 

(ii) repeatedly subsample 1000 cells and compute their embeddings using the new model and the 

Buenrostro2018 model using projection; (iii) cluster the cells using three strategies (HC, K-means and 

Louvain); and (iv) compute the RAGI score with these 1000 subsampled cells. The scores were then 

averaged across all subsamples. Our results showed that the RAGI score between the original and 

projected datasets did not differ significantly, indicating similar clustering performance (Figure 4.3D, 

Supplementary Figure A.4). Taken together, these results suggest that scEmbed can effectively and 

consistently transfer knowledge from a pre-trained model to new datasets with minimal loss in 

clustering performance.

56



Pre-trained models from reference datasets can be used to annotate cell clusters

Atlas
E V

Atlas
E V

a
cellcano predictions

scEmbed Prediction

5 3 6 0 0 1 4 0

3 3 5 2 2 4 0 6 2 0 1

3 8 8 6 1 1 4 4 4 0 4

0 0 0 2 9 8 3 1 9 0

0 0 0 6 0 1 1 1 0

5 3 6 3 2 4 0 6 6 5

C
el

lc
an

o 
P

re
di

ct
io

n

E V

UMAP 1

U
M

A
P

 2

E V
Regions

C
el

ls

E V
Regions

C
el

ls

E V
Regions

C
el

ls

UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

b d

UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

c e f

10X PBMC's Projected
through Luecken2021

B1 B
CD4+ T activated
CD4+ T naive

CD8+ T naive
CD14+ Mono
CD16+ Mono
Erythroblast

CD8+ T

G/M proj
HSC
ID2-hi myeloid proj
ILC
Lymph proj
MK/E proj
NK
Naive CD20+ B
Normoblast
Plasma cell
Proerythroblast
Transitional B
pCD2
pDC

leiden clusters

cell type predictions (F1: 0.87)

B cells

CD4 T cells

CD8 T cells

Monocytes

Dendritic cells

NK cells

B ce
lls

CD4 T ce
lls

CD8 T ce
lls

Monocytes

Dendriti
c c

ells

NK ce
lls

Figure 4.4: Pre-trained embedding models can be exploited for cell-type annotation tasks.

a. Diagram showing scEmbed’s three projection paths. b. Overview of the standard “no-projection” data flow. 
c. Overview of three data flows for new data. EV-projection places the new data in the same latent space 
as the reference data. d. UMAP plot of the reference data embeddings built using the standard workflow. e. 
UMAP plot of the new PBMC data with E-projection. f. Plots showing the EV-projection data flow applied to 
the new PBMC dataset. Grey cells represent the reference topology; colored cells are projected new PBMC 
data. Separate plots depict individual clusters for visual clarity. g. Confusion matrix of scEmbed classification 
results compared to Cellcano. h. UMAP plots showing the cell labels assigned by Cellcano (left) and the cell 
type labels assigned by scEmbed (right).

To clarify the three projection methods used in scEmbed, we define each approach and its specific use 

case. The “no projection” method represents the standard workflow where a model is trained directly 

on the query dataset, and embeddings are generated by passing the same data through the trained 

model. “E-projection” involves training a model on reference data and then generating embeddings 

(“E”) for new, unseen query data using the pre-trained region embeddings. This approach enables 

knowledge transfer without retraining. “EV-projection” extends E-projection by additionally training 

a UMAP model on the reference dataset embeddings, allowing new query data to be both embedded 

using the pre-trained model and visualized (“V”) within the reference dataset’s UMAP topology. 

This unique capability enables researchers to directly compare query cells to reference populations 

in a shared embedding space, facilitating intuitive cell-type annotation and biological interpretation 

(Supplementary Figure A.3).

57



Now, convinced that pre-trained models could be used to visualize an unseen query dataset, we next 

asked whether this approach could be used to annotate cell types without training a new model 

specifically for cell-type annotation. Specifically, we sought to leverage reference mapping and vector 

similarity to transfer labels from a reference set to a query set. We first built a reference model using 

the Luecken2021 multi-omic dataset118, a first-of-its-kind multimodal benchmark dataset of 120,000 

single cells from the human bone marrow of 10 diverse donors measured with two commercially 

available multimodal technologies. Using scEmbed and the ‘no projection’ data flow (see methods), 

we trained a model on the dataset and clustered the resulting learned embeddings (Figure 4.4A). This 

model served as the reference for all downstream experiments with a new PBMC dataset from 10X 

genomics. Using E-projection, scEmbed creates visually distinct clusters of single cells (Figure 4.4B). 

To visualize these embeddings in the context of the original embedding topology, we employ EV-

projection where we first train a UMAP model on the original Luecken2021 embeddings and then 

project the new PBMC data into this UMAP space using the pre-trained Luecken2021 model. We found 

that each identified cluster from E-projection aggregates to a distinct location in the original UMAP 

embedding topology of the Luecken2021 model (Figure 4.4C). This suggests that the new PBMC data 

is being meaningfully integrated into the reference topology, allowing for direct comparison between 

the new and reference datasets.

Confident our pre-trained Luecken2021 embedding model was distinctly clustering the new PBMC 

dataset, we sought to assign cell-type labels to each cluster. We used Cellcano, a new scATAC-

seq cell annotation method, to assign ground-truth labels to each cluster of the E-projected PBMC 

embeddings for evaluation of our method111 (Figure  4.4D). Our cell-type annotation system was 

limited by the cell types annotated in Luecken2021; as such, we mapped each scEmbed prediction 

class to a corresponding Cellcano class for comparison (Supplementary Table A.1) after following 

their annotation procedure (see the scEmbed materials and methods; Supplementary Figure  A.5). 

Using a simple k-nearest-neighbor (KNN) classification algorithm, scEmbed was highly consistent 

with the Cellcano labels (F1 = 0.87, Figure 4.4E). However, without class mapping, scEmbed offers 

higher specificity of cluster identity and even identifies a cluster of ID2-hi myeloid progenitor cells 

not found with Cellcano (Figure 4.4F). Moreover, this workflow enables researchers to quickly try 

new models trained on many different cell types and rapidly discover cell types in their data. Using 

our projection system, researchers can avoid training a new model each time they want to use a new 

reference dataset, which is a common approach in many modern cell-type annotation systems40,111,119. 

The entire process of dimensionality reduction, clustering and annotation took <10 min on a laptop, 

58



and we observed similar time savings across several models. Thus, we conclude that EV-projection is 

a promising approach for fast visualization and annotation of new data.

Discussion and future work

In this work, we demonstrate the robustness and versatility of scEmbed, a new tool for the analysis 

of scATAC-seq data. scEmbed differs from existing methods in that instead of learning embeddings of 

individual cells directly, it first learns embeddings of genomic regulatory regions and then uses these 

to compute cell embeddings. We demonstrate how this approach allows scEmbed to use pre-trained 

genomic region embedding models to effectively cluster data not seen by the model. Our evaluation of 

scEmbed against existing scATAC-seq methodologies demonstrates its efficacy and competitiveness, 

even with a relatively simple network architecture. scEmbed performs well, even when faced with 

severe data loss. The standout feature of scEmbed is its capability to repurpose learned region 

embeddings for downstream analysis tasks.

This approach provides flexibility and efficiency, setting it apart from other currently available 

tools. By exploiting region overlaps and applying previously learned region embeddings, we have 

formulated a novel method for representing unseen scATAC-seq data within the latent space of the 

original training data. This process, termed ‘projection’, yielded superb clustering of cells, showing 

no significant decrease in performance compared with models trained entirely on the new dataset. 

This performance underscores the potential of scEmbed in the context of ATAC-seq transfer learning 

tasks and opens up exciting possibilities for future research. Moreover, we emphasize the novelty 

of scEmbed in its ability to engage in transfer learning without the need for another data modality 

like scRNA-seq, which overwhelmingly required by current methods. Future studies will explore the 

ability of our model to learn and extract overarching regulatory patterns from publicly available data. 

This learning, coupled with the inherent transferability of scEmbed, will empower researchers to 

fine-tune the models for specific downstream tasks, enabling gains in performance, efficiency, and 

flexibility.

Finally, we leveraged embeddings computed by scEmbed and its pre-trained models to build a novel 

cell-type annotation system. Our method is consistent with current scATAC-seq cell-type annotation 

implementations, with the added advantage of requiring no external data modalities. Furthermore, 

by exploiting pre-trained models and pre-computed cell embeddings from reference datasets, the 

scEmbed annotation system can easily scale to millions of cells and uses only a fraction of the compute 

time. This is because utilization of a pre-trained model requires only interval overlap analysis to map 

the new data into the feature space on which the model was trained. We have made the pre-trained 

59



models used in this study available for download and use on huggingface. To facilitate model sharing 

and usability even further93, we have built software packages to easily download and use these models 

within Python. Moreover, these same packages can be used to train new models or fine-tune public 

ones on custom datasets. We hope that these resources will enable researchers to leverage the power 

of scEmbed for their own research.

The integration of unsupervised learning with transfer learning may offer new directions for other 

bioinformatics tasks that are similarly burdened by the challenges of high dimensionality and data 

sparsity. Furthermore, the deployment of pre-trained models for reference datasets may inspire novel 

methodologies for efficient and accurate cell-type annotation systems across different data modalities. 

In the future, the pre-training approach of scEmbed could be adapted for use with cross-modality 

methods that span data types104. In addition, more advanced deep learning architectures and training 

strategies like transformers could be integrated to further enhance the model’s performance and 

applicability. In conclusion, scEmbed’s ability to distill meaningful representations from vast, complex 

scATAC-seq datasets, and repurpose this knowledge for rapid and accurate analysis of new datasets, 

has great potential. This work is a step towards developing more efficient, scalable, and flexible 

tools for genomic data analysis. The opportunities unlocked by scEmbed for research and clinical 

application promise exciting advancements in the comprehension of cellular heterogeneity and the 

intricate regulatory networks that drive it.

60



Chapter 5: Atacformer: A transformer-based foundation 

model for analysis and interpretation of ATAC-seq data

Nathan J. LeRoy1,2, Guangtao Zheng3, Oleksandr Khoroshevskyi1, Donald Campbell1, Aidong Zhang3, Nathan 
C. Sheffield1,2

1Department of Genome Sciences, School of Medicine, University of Virginia, 22908, Charlottesville VA
2Department of Biomedical Engineering, School of Medicine, University of Virginia, 22908, Charlottesville VA
3Department of Computer Science, School of Engineering and Applied Sciences, University of Virginia, 22908, Charlottesville 
VA

Note: This chapter is adapted from the following preprint:
LeRoy et al.120, which introduced Atacformer, a transformer-based foundation model for analysis and 

interpretation of ATAC-seq data.

Introduction to Atacformer

The exponential growth of publicly available genomic data has spurred the development of powerful 

pre-trained foundation models across diverse genomic modalities, including DNA sequences (e.g. 

Enformer52 and DNA Discrete Diffusion56); gene expression (e.g. Geneformer58 and scGPT57); and 

protein folding (e.g. AlphaFold53–55). By leveraging transfer learning, these models have dramatically 

enhanced data integration capabilities, enabling researchers to apply knowledge learned from large-

scale datasets to new, often smaller-scale tasks.

Despite significant progress across genomics, transcriptomics, and proteomics, the development of 

foundation models explicitly tailored for epigenomic data remains comparatively underexplored. 

The Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) and its single-cell variant 

(scATAC-seq)18,24 have emerged as key methods for interrogating the regulatory landscape of the 

genome, offering insights into disease mechanisms, cellular heterogeneity, and tissue development. 

However, these assays present computational challenges due to their high dimensionality and 

inherent data sparsity92,121. Consequently, a wide array of computational tools have been developed 

to manage these complexities and simplify analysis pipelines for researchers. Comprehensive 

platforms, including ArchR35 and SnapATAC31,37, provide scalable, end-to-end solutions that support 

many standard workflows, such as quality control, dimensionality reduction, and trajectory analysis. 

More advanced, specialized tools like cisTopic provide a probabilistic topic modeling framework 

for discovering co-accessible enhancers and regulatory patterns, while deep learning approaches 

like SCALE39 and scBasset41 seek to address fundamental challenges of data sparsity and learning 

relationships between DNA sequence and chromatin accessibility.

61



These tools have pushed forward the analysis of scATAC-seq data. However, current methods for 

scATAC-seq are specialized, task-specific, and limited to the immediate dataset under investigation. 

They fail to exploit the shared biological knowledge encoded in the many publicly available datasets. 

No method has focused on producing a foundation model, trained on vast and diverse datasets, 

designed to be adapted to both new models through downstream fine-tuning and to new datasets 

through transfer learning. Recognizing this limitation, new models for scATAC-seq are emerging. 

This includes ChromFound63 and EpiAgent62, which are the first foundation models explicitly tailored 

for scATAC-seq, utilizing large-scale pre-training on millions of cells. Despite their advances, these 

models have several limitations. First, they are confined to single-cell scATAC-seq data and do not 

handle bulk ATAC-seq region-sets, which are widely used in many contexts. Second, they do not 

model genomic regions as discrete tokens, opting instead for continuous representations of cells that 

limit interpretability. Third, they rely on very large architectures – for example, EpiAgent uses over 

1 billion parameters across its embedding and transformer modules, which requires substantial GPU 

resources for inference and adoption. Fourth, they do not explore multimodal contrastive integration 

with scRNA-seq, which restricts cell-type transfer and cross-modal inference capabilities122.

As demonstrated in the previous chapter, scEmbed validated the feasibility of treating genomic 

regions as discrete tokens and showed that fixed region embeddings could effectively support transfer 

learning for scATAC-seq analysis. However, scEmbed also revealed a fundamental limitation of static 

embeddings: they encode a single, universal representation for each genomic region that remains 

constant regardless of cellular context. This approach fails to capture the dynamic, cell-state-specific 

nature of gene regulation, where the functional role of a regulatory element depends heavily on the 

surrounding chromatin landscape and the other regions with which it interacts. A transcription factor 

binding site near an active promoter in a stem cell may have a vastly different regulatory impact than 

the same site in a differentiated neuron. To address this limitation and move toward a true foundation 

model for scATAC-seq, we require contextualized embeddings that adapt based on the regulatory 

context in which each region appears – precisely the capability that transformer architectures with 

self-attention mechanisms provide.

To address these limitations, we present Atacformer, a transformer-based foundation model. 

Atacformer leverages large-scale pre-training on single-cell ATAC-seq data. Furthermore, unlike 

existing approaches, we model and place emphasis on genomic intervals as discrete tokens – 

the fundamental “words” of the regulatory genome. This token-based representation aligns with 

biological intuition and allows Atacformer to exploit the strengths of transformer architectures, 

which are particularly well-suited for learning from sequences of discrete inputs, as demonstrated 

62



in Natural Language Processing. Beyond the Atacformer model, we also introduce a dual-encoder 

contrastive learning approach called Contrastive RNA-ATAC-Fine-Tuning (CRAFT), which supports 

cross-modal alignment between scATAC-seq and scRNA-seq data. We benchmarked the performance 

of Atacformer and CRAFT models across four key applications. First, we assessed zero-shot cell 

clustering on multiple new, unseen PBMC datasets after fine-tuning the model on a cell-type clustering 

task. Next, we tested direct fragment file processing to measure speed and biological concordance 

without conventional preprocessing. Third, we applied Atacformer to bulk region-set data to evaluate 

embedding quality and metadata prediction. Finally, we leveraged the token-level embeddings to 

investigate putative weak regulatory interactions. Our results demonstrate that Atacformer and 

CRAFT can achieve state-of-the-art performance with best-in-class runtime for scATAC-seq analysis 

while maintain powerful, zero-shot clustering performance on new, unseen datasets.

Results

Atacformer is a new transformer-based foundation model for ATAC-seq data

a

r101 r56 r2 r99 r1764

b

c

d

tokens

co-accessible regions
tokenized into universe

initial region
embeddings

transformer
blocks

tokenization
with replacement

contextualized
token embeddings

and predictions

regions

ce
ll

s

contextualized
embeddings

BED

New cell #2

New cell #3

Universe

New cell #1

New cell #1

New cell #2

New cell #3

input regions

output tokens

vocab/universe

atacformer not replaced
replaced

Brain

Tonsil
Esophagus

Blood

Colon

Skin

Artery

Muscle

Heart
Adipose

Pancreas
Small intestine

Lung
Thyroid

Nerve

Liver Breast Quadriceps

Uterus UMB4540 Ovary Omentum
Stomach Parapharyngeal Adrenal Pelvis
Mammary Vagina Prostate Eye

175k

150k

125k

100k

75k

50k

25k

0

N
u

m
be

r 
of

  C
el

ls

br
ain

pa
lat

in
e t

on
sil

es
op

hag
us

bl
oo

d
co

lo
n

sk
in

ar
te

ry

m
usc

le
hea

rt

ad
ip

os
e

pa
ncr

ea
s

sm
all

 in
te

sti
ne

lu
ng

th
yr

oi
d
ner

ve

ute
ru

s

sto
m

ac
h

m
am

m
ar

y

UM
B45

40

pa
ra

ph
ar

yn
ge

al

va
gi

na
ov

ar
y

ad
re

nal

pr
os

ta
te

 g
lan

d liv
er

br
ea

st

qu
ad

 m
usc

le

om
en

tu
m

pe
lv

ic 
m

usc
le ey

e

Figure 5.1: An overview of the Atacformer architecture and training procedure.

a. Model architecture and pretraining schematic for Atacformer. Individual cells are tokenized into the 
model universe, followed by random token replacement. These tokens are then passed to the embedding 
module, followed by 𝑛 transformer blocks to generate contextualized embeddings. b. Tissue distribution and 
representation in the scATAC atlas used in Atacformers pretraining. c. The Atacformer tokenization strategy. 
New cells are tokenized into the model vocabulary using interval overlap analysis.

Atacformer is a transformer-based50 foundation model that produces contextualized embeddings of 

genomic regions. Unlike existing models that are large, rigid, and task-specific, Atacformer is general-

63



purpose and lightweight: users need only provide chromosome coordinates (chromosome, start, end) 

to begin analysis. By minimizing assumptions about the data and streamlining inputs, Atacformer 

serves as a fast, efficient backbone that can be adapted to virtually any genomic interval task. 

Atacformer consists of two main components: a genomic region embedding module and a stacked 

transformer encoder layer with multi-head attention (Figure 5.1A). To train Atacformer, we curated 

a single-cell ATAC-seq atlas consisting of 1.2 million cells and > 10 billion tokens from 30 tissues 

(Figure  5.1B; Supplementary Table  A.2)123–128. We uniformly processed all raw datasets using a 

standardized pre-processing pipeline to ensure data integrity and compatibility (see Methods). We 

used these uniformly processed results to create a unified consensus vocabulary based on our earlier 

work90 consisting of 890,704 distinct genomic regions (see Methods).

To tokenize a single cell into a set of dense, low-dimensional embeddings, we first map each accessible 

region in the cell to a corresponding region in the model’s vocabulary through simple interval 

intersection (Figure 5.1C). This process transforms noisy, unstandardized genomic intervals into fixed 

tokens while preserving the biological significance of co-accessibility patterns. To enable extremely 

fast, in-memory tokenization that supports modern machine learning workflows, we developed a set 

of Rust-based tokenizers to be used in conjunction with Atacformer91.

Atacformer is trained using an ELECTRA-style pre-training objective129 (Figure  5.1D) in which 

Atacformer receives tokenized region sets in which a random subset of tokens are replaced with 

others sampled from the vocabulary. The model is then tasked with predicting which tokens were 

replaced. Unless noted, we pre-trained Atacformer using a 45% token replacement rate and a context 

window of 8,192, as this captures the majority of co-accessible regions in all single-cells in our corpus 

(Supplementary Figure A.7). We refer to this model as atacformer-base. We evaluated atacformer-base 

to establish a performance baseline, and then fine-tuned it to achieve better performance and enable 

more flexible downstream analyses.

64



Atacformer can be paired with Geneformer for powerful multiomics analysis

Single-cells

scRNA-seq profile Cell-embeddings

Pairwise
dot-product

matrixscATAC-seq profile Projections

Atacformer

Geneformer 1
1

1
1

1

0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0

00 0 0

single-cells

scRNA-seq profile

scATAC-seq profile
decoder

CRAFT

a

cb d

e

f

g

Multiome dataset

genes regions

RNA ATAC

UMAP 1

U
M

A
P

 2

predict gene activity
h

UMAP 1

U
M

A
P

 2

CRAFT training pipeline

RNA-ATAC embedding similarity by cell typeCo-embedding space
alignment

LYZ predicted Epxression

Query ATAC cell-embedding

N
ea

re
st

 R
N

A
ce

ll
-e

m
be

dd
in

g 
n

ei
gh

bo
r

B1  B

CD4 +  T a c tiva te d

CD4 +  T na ive

CD8 +  T

CD8 +  T na ive

CD1 4 +  Mono

CD1 6 +  Mono

Erythrob la s t

G/M prog

HS C

ID2 -hi m ye lo id  prog

ILC

Lym ph prog

MK/E prog

NK

Na ive  CD2 0 +  BNorm ob la s t

Pla s m a  ce ll
Proe rythrob la s t

Tra ns itiona l B cDC2

pDC

RNA-seq

RNA ATAC

B1  B

CD4 +  T a c tiva te d

CD4 +  T na ive

CD8 +  T

CD8 +  T na ive

CD1 4 +  Mono

CD1 6 +  Mono

Erythrob la s t

G/M prog

HS C

ID2 -hi m ye lo id  prog

ILC

Lym ph prog

MK/E prog

NK

Na ive  CD2 0 +  BNorm ob la s t

Pla s m a  ce ll
Proe rythrob la s t

Tra ns itiona l B cDC2

pDC

RNA-seq

Multimodal embeddings of training set

ATAC-seq

CD4  Na ive

CD4  TCM

CD4  TEM

CD8  Na ive

CD8  TEM_1

CD8  TEM_2

CD1 4  Mono

CD1 6  Mono

HS PC

Inte rm e d ia te  B

MAIT

Me m ory B

NK

Na ive  B

Pla s m a

Tre g

cDC

g d T

pDC

pbmc5k cell types

CD3E (T-cells)

Predicted expression level

GNLY (NKL / cytotoxic)

LYZ (monocytes) MS4A1 (B-cells)

0.0 1.0 Pla s m a

Me m ory B

Inte rm e d ia te  B

Na ive  B

Tre g

CD8  TEM_1

CD4  TCM

CD8  Na ive

CD4  Na ive

CD4  TEM

MAIT

CD8  TEM_2

g d T

pDC

NK

CD1 6  Mono

cDC

HS PC

CD1 4  Mono

Predicted
expression level

monocytes

T Cells

B Cells

0 2 4

H
SC

Ly
m

ph p
ro

g

ID
2 -h

i m
ye lo

id
 p

ro
g

G
/M

 p
ro

g

M
K/E

 p
ro

g

Pro
e ry

th
ro

b la
s t

Ery
th

ro
b la

s t

N
orm

ob la
s t

N
a iv

e  C
D

2 0 +
 B

Tr
a ns i

tio
na l B

B1  B

Pla
sm

a  c
e ll

CD
4 +

 T
 n

a iv
e

CD
4 +

 T
 a

c tiv
a te

d

CD
8 +

 T
 n

a iv
e

CD
8 +

 T N
K

IL
C

CD
1 4 +

 M
ono

CD
1 6 +

 M
ono

pD
C

cD
C2

HS C

Lym ph prog

ID2 -hi m ye lo id  prog

G/M prog

MK/E prog

Proe rythrob la s t

Erythrob la s t

Norm ob la s t

Na ive  CD2 0 +  B

Tra ns itiona l B

B1  B

Pla s m a  ce ll

CD4 +  T na ive

CD4 +  T a c tiva te d

CD8 +  T na ive

CD8 +  T

NK

ILC

CD1 4 +  Mono

CD1 6 +  Mono

pDC

cDC2

B Cells T CellsMonocytes

query cell

Figure 5.2: CRAFT is a powerful dual-encoder, multimodal single-cell embedding model.

a. Schematic of the CRAFT training procedure. (Left) Schematic of a multiomic single-cell dataset showing 
ATAC and RNA signal jointly profiled in a single cell. (Right) Training step for a single mini-batch of cells. 
b. UMAP visualizations of the single-cell embeddings generated using the ATAC-encoder (left) and the 
RNA encoder (right). c. Schematic of the learned co-embedding space after training. d. Heatmap of nearest 
RNA-embedding neighbors to a single ATAC-embedding cell, organized by cell type. e. Schematic of the RNA-
decoder training procedure. f. PBMC5k dataset clustered using ATAC-embeddings; colored by cell-type. g. 
Heatmaps of PBMC5k dataset, colored by predicted RNA-expression profile for four different marker genes. 
h. Distribution of predicted LYZ expression levels across cell types.

We sought to fine-tune Atacformer on a multimodal task. Recent breakthroughs, such as CLIP44, 

demonstrate that aligning fundamentally different data types in a shared latent space enables 

zero-shot transfer and cross-modal retrieval. Inspired by this, we investigated whether Atacformer 

would benefit from being paired with an encoder of another modality, such as scRNA-seq. To 

investigate, we developed Contrastive RNA-ATAC Fine-Tuning (CRAFT), a multi-modal model that 

65



combines Atacformer with Geneformer, a transcriptome encoder58. CRAFT uses contrastive training 

on multiomic data to create a shared latent space for scATAC-seq and scRNA-seq data. We initialized 

the model with pre-trained Atacformer and Geneformer models. We then trained CRAFT using a 

multiomic dataset containing over 106,000 cells profiled with scATAC and scRNA simultaneously 

(Figure 5.2A; see Methods).

UMAP visualizations of ATAC-seq and RNA-seq embeddings were topologically similar, highlighting 

modality alignment (Figure 5.2B). Embeddings maintained biologically meaningful relationships; for 

example, the distinct groups of monocytes and CD8+ T cells are maintained in both modalities, as is a 

clear linear trajectory of the stages of red blood cell development from proerythroblast to erythroblast 

to normoblast . When projected into a single two-dimensional UMAP, modalities separated visually 

(Supplementary Figure  A.8); but despite this, nearest neighbors in higher-dimensional spaces 

preserved biological similarities, allowing accurate cross-modal cell-type alignment (Figure 5.2C). To 

assess biological coherence, we projected ATAC embeddings into the multimodal CRAFT latent space 

and queried their nearest RNA neighbors. Consistently, the local RNA neighborhoods aligned with 

the same cell type as the corresponding ATAC embedding. (Figure 5.2D).

Next, we assessed whether the aligned ATAC embeddings encoded transcriptomic information by 

training a small decoder to predict RNA-seq profiles from ATAC embeddings (Methods, Figure 5.2E). 

This should allow us to leverage the joint CRAFT embeddings to predict scRNA-seq outputs from 

datasets where only scATAC-seq was assayed, or vice versa. We applied this decoder to an unseen 

scATAC-seq dataset with known labels, labeled with scVI (see methods). UMAP projections of the 

ATAC embeddings visually separated cells into clusters for T Cell, B Cell, and Monocyte lineages 

(Figure 5.2F), showing that these out-of-sample cells are distinguished by the model. Next, we applied 

the RNA-seq decoder to predict scRNA-seq profiles. The predicted RNA-seq profiles accurately 

recapitulated known gene expression differences among these lineages, including cell-type-specific 

markers. For example, the imputed expression of monocyte marker LYZ was elevated in monocytes; 

B cell marker MS4A1 was elevated in B cells; T cell marker CD3E was elevated in T cells; cytotoxic 

cell marker GNLY was elevated in cytotoxic cells (Figure 5.2G). Finally, we examined the predicted 

normalized expressed across cell-types quantitatively. As an example, we show that the monocyte 

marker LYZ is disproportionately up-regulated in Monocyute-like cells (Figure  5.2H). Collectively, 

these results demonstrate that RNA-seq patterns have been incorporated in the ATAC-seq embeddings 

of the multi-modal CRAFT model.

66



In total, these results demonstrate that CRAFT effectively integrates Atacformer embeddings with 

complementary single-cell models, enabling robust multimodal analysis and cross-modal biological 

inference. This dual-encoder framework accurately aligns chromatin accessibility and transcriptomic 

data within a unified latent space, facilitating precise cell-type identification and enhancing the 

interpretability of single-cell chromatin profiles.

Fine-tuned Atacformer models and CRAFT enable fast and accurate zero-shot cell-

clustering

T cell

Mono

(a)

T cell(+)

(-)

(a)

(+)
(-)

a

c

d

b

at
ac

fo
rm

er
-b

as
e

at
ac

fo
rm

er
-c

tft
C

R
A

FT

PCA

atacform
er-b

ase

atacform
er-c

tft

SnapATAC2

EpiAgent

SCALE
PCA

atacform
er-b

ase

atacform
er-c

tft

SnapATAC2

EpiAgent

scE
mbed

scE
mbed

scE
mbed

SCALE PCA

atacform
er-b

ase

atacform
er-c

tft

SnapATAC2

EpiAgent

SCALE

ARI
AMI
Homogeneity

ARI
AMI
Homogeneity

ARI
AMI
Homogeneity

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

e

PBMC5K brain PBMC3k Simulated

CRAFT

CRAFT

CRAFT

CRAFT

T
im

e 
(s

)

0

500

1,000

1,500

2,500

3,000
PBMC3k Simulated
PBMC5k
Brain

atacformer-base

atacformer-ctft
SnapATAC2

scEmbed PCA
EpiAgent

SCALE

triplet loss overview speed analysis

speed v performance

A
dj

u
st

ed
 R

an
d 

In
de

x

Throughput (cells/s)
10 100

0.0

0.2

0.4

0.6

0.8

Deep learning
Relative model size 

Standard

slow fast

in
a

ccu
ra

te
a

ccu
ra

te

C
lu

st
er

in
g 

sc
or

e

e p ia g e nt

CRAFT

atacformer-ctft

SnapATAC2SCALE

atacformer-base

scEmbed

PCA

pbmc5k
CD4 +  T Ce ll
CD8 +  T Ce ll
CD1 4 +  Mono
NK
Na ive  CD2 0 +  B
cDC2

pbmc3k-sim
CD4 Tce lls
CD8 Tce lls
De nd riticCe lls
Me m oryBce lls
NKce lls
Na ive Bce lls

brain
AS C
EX
INH
MG
ODC
OPC
PER.END

AS C
EX
INH
MG
ODC
OPC
PER.END

CD4 Tce lls
CD8 Tce lls
De nd riticCe lls
Me m oryBce lls
NKce lls
Na ive Bce lls

CD4 +  T Ce ll
CD8 +  T Ce ll
CD1 4 +  Mono
NK
Na ive  CD2 0 +  B
cDC2

CD4 +  T Ce ll
CD8 +  T Ce ll
CD1 4 +  Mono
NK
Na ive  CD2 0 +  B
cDC2

CD4 Tce lls
CD8 Tce lls
De nd riticCe lls
Me m oryBce lls
NKce lls
Na ive Bce lls

AS C
EX
INH
MG
ODC
OPC
PER.END

Figure 5.3: Atacformer clusters new scATAC data accurately in a zero-shot approach.

a. Schematic of the supervised cell-type fine-tuning task using triplet loss. b. Runtime comparisons 
between Atacformer and other popular methods for clustering scATAC-seq data. c. Clustering performance 
of Atacformer-base and Atacformer-ctft on three separate PBMC datasets compared with other popular 
methods for clustering scATAC-seq data. d. UMAP plots highlight the latent space change when fine-tuning 
Atacformer on cell types. e. Runtime versus ARI chart for Atacformer and other popular methods.

The first bottleneck in scATAC-seq analysis is cell clustering. Most current tools either retrain on every 

dataset or take minutes per thousand cells. We sought to improve cell-clustering without sacrificing 

67



speed or requiring any additional processing. A pre-trained Atacformer model could possibly cluster 

unseen data very quickly; however, we reasoned that a model trained on an unsupervised token 

replacement prediction task would perform sub-optimally for a cell-type clustering task. To that end, 

we sought to improve the single-cell embeddings in two ways: First, inspired by the Sentence-BERT 

(SBERT) family of text embedding models130, we designed a novel fine-tuning approach for cell-

type clustering. Starting with the base model (atacformer-base), we trained a cell-type fine-tuned 

version, atacformer-ctft using triplet loss to position cells of the same type together in the latent 

space (Figure 5.3A; see Methods). We used the Luecken2021 multi-omics PBMC dataset for fine-tuning, 

which provides high-confidence cell-type labels across matched modalities118. Second, we utilized our 

previously described CRAFT model. Our reasoning was that the resultant single-cell embeddings from 

CRAFT would be much higher quality through mutual refinement of ATAC-seq and RNA-seq signal 

– a phenomenon seen in other contexts131,132.

To assess both the base and fine-tuned models, we collected three separate datasets for evaluation: 1) 

A third-party, pre-annotated brain dataset, 2) a simulated PBMC dataset from bulk ATAC-seq data, 

and 3) a pre-annotated PBMC dataset. We generated cell embeddings for all cells in each dataset, 

and then used them to benchmark atacformer-base, atacformer-ctft and CRAFT against Principal 

Component Analysis (PCA) and several popular methods for scATAC-seq clustering37,39,62,106. To 

establish Atacformer’s capabilities for clustering data it’s never seen before (i.e. zero-shot clustering), 

all datasets were explicitly excluded from the training data for both atacformer-base, atacformer-

ctft, and CRAFT.

We found Atacformer to be one of the fastest methods evaluated; the only faster method being our 

previous Word2Vec-based method scEmbed106 (Figure 5.3B). The slowest methods were those that 

required the use of a very large model (EpiAgent, 1.5B parameters62), or required training from scratch 

on a combined dataset with both the original and new data (SCALE).

To evaluate clustering accuracy, we clustered the embeddings obtained from each method to obtain 

cluster labels. These labels were then compared to the ground-truth cell-type labels using three 

metrics: Adjusted Rand Index (ARI), Adjusted Mutual Information (AMI), and Homogeneity score (see 

Methods). As expected, the atacformer-base model underperformed other methods for PBMC-based 

datasets. The cell-type fine-tuned model increased clustering performance according to ARI by ∼

15% across the PBMC datasets (Figure 5.3C). These gains were also reflected in the training dataset 

for the fine-tuning procedure (Supplementary Figure  A.10). Notably, atacformer-base performed 

exceptionally well on the brain dataset, surpassing the cell-type fine-tuned model. We reasoned that 

68



this was because the cell-type fine-tuned atacformer model was fine-tuned only on blood data, hurting 

its performance. Finally, we found CRAFT to perform very well across the datasets, highlighting the 

power of contrastive learning for embedding quality improvement. To further explore how the fine-

tuning step improved the base model for this task, we compared the embeddings of the two atacformer 

models visually using UMAP. The clustering score gains are clearly reflected in the UMAPs. For 

example, the cell-type fine-tuning approach significantly improves Atacformers ability to cluster the 

NK-cells along with differentiating between CD4+ and CD8+ T cells (Figure 5.3D).

In practice, it is common for individual cells to yield more fragments than the model’s maximum 

context window, resulting in more tokens than can be processed in a single forward pass 

(Supplementary Figure A.9A). We addressed this with two strategies: (1) truncating after the first C 

tokens (Supplementary Figure A.9B), and (2) randomly sampling 𝐶 tokens per cell (Supplementary 

Figure  A.9C). We adopted random sampling, reasoning that it better preserves the underlying 

biological heterogeneity and avoids systematic positional bias. To quantify the effect of context 

window truncation, we systematically varied the number of tokens sampled per cell and assessed 

the impact on clustering performance (Supplementary Figure A.9). Remarkably, we observed that 

Atacformer maintains strong clustering accuracy even with a substantial reduction in context window 

size (Supplementary Figure  A.9D). The performance remains robust until severe truncation, after 

which clustering metrics rapidly decline (Supplementary Figure A.9E). This result suggests that the 

model is resilient to moderate input reduction, enabling efficient analysis without significant loss in 

biological resolution.

We highlight CRAFT’s striking performance when considering both speed and clustering ability 

together. For the PBMC5k dataset, CRAFT not only exhibited the best clustering performance, it also 

generated those clusters in the smallest amount of time (Figure 5.3E), yielding the highest cells-per-

second throughput of all methods. In addition, we performed a preliminary batch-correction analysis 

across multiple PBMC datasets. Visually, Atacformer embeddings integrated as well as EpiAgent’s 

(Supplementary Figure  A.11), despite the latter’s much larger parameter count. This suggests 

that Atacformer’s zero-shot capabilities hold promise for rapid, multi-dataset integration without 

retraining, a key requirement for scalable single-cell analysis. Finally, we omitted ChromFound63, a 

newly published scATAC-seq foundation model, from these panels since the code is not open-source 

and ARI/runtime on these exact PBMC benchmarks aren’t reported. In their work, they report 

ARI=0.48 on a similar PBMC dataset, while maintaining a throughput of 4 cells per second. This would 

make it the second slowest method benchmarked.

69



Atacformer learns global regulatory structure in bulk region set data

assay cell line

a b c d

g

DNase-HS

GM DNase-seq

TF ChIP-seq

ChIP-seq

Histone ChIP-seq

DNase-seq

HEK293
HepG2

HeLa-S3

ATAC-seq

MCF-7

HEK293T

K562

GM12878

A549

HeLa

BED file embeddings
colored by assay-type

BED file embeddings
colored by cell-line

Region embeddings
colored by TSS dist

Region embeddings
colored by annotation

fe

0 10

TSS distance log10

TSS distance Region type

d ELS

pELS

DNa s e -H3 K4 m e 3

CTCF-only

PLS

1,200

1,000

800

600

400

200

0
0

Correlation

Fr
eq

u
en

cy

0.25 0.50 0.75 1.00-0.25-0.50-0.75

Original
Shuffled

pELS
centroid

dim 1

di
m

 2

Regions with
large TSS distance

Regions with
small TSS distance

0 .9 6 0 .0 0 0 .0 0 0 .0 3 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0

0 .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0

0 .0 7 0 .0 0 0 .8 1 0 .0 6 0 .0 0 0 .0 6 0 .0 0 0 .0 0 0 .0 0 0 .0 0

0 .0 2 0 .0 0 0 .0 1 0 .7 9 0 .1 1 0 .0 7 0 .0 0 0 .0 0 0 .0 0 0 .0 1

0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0

0 .0 0 0 .0 0 0 .1 5 0 .2 6 0 .0 0 0 .5 0 0 .0 9 0 .0 0 0 .0 0 0 .0 0

0 .0 0 0 .0 0 0 .0 1 0 .3 9 0 .0 0 0 .3 4 0 .2 7 0 .0 0 0 .0 0 0 .0 0

0 .0 0 0 .0 0 0 .0 1 0 .0 5 0 .0 0 0 .0 3 0 .0 2 0 .7 8 0 .0 0 0 .1 2

0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .8 5 0 .0 0 0 .1 5

0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0

Predicted cell line

K56
2

Hep
G2

HEK29
3

HEK29
3T

M
CF-

7

HCT11
6

A54
9

HeL
a

HeL
a-

S3

GM
12

87
8

G
ro

u
n

d 
tr

u
th

 c
el

l l
in

e

Confusion matrix for top 10 cell linesK562

HepG2HEK293
HEK293T

M
CF-7HCT116
A549
HeLaHeLa-S3

GM
12878

Figure 5.4: Atacformer generalizes to bulk regulatory datasets.

a. UMAP projection of ∼10,000 BED file embeddings from BED files on BEDbase. Points are coloured by assay, 
revealing discrete clusters of assay types. b. The same UMAP projection colored by cell line shows distinct 
groupings for common cell types, indicating that Atacformer encodes both experimental and biological 
context without supervision. c. UMAP visualization of a set of contextualized region embeddings from an 
example BED file, colored by TSS distance. d. The same UMAP visualization, instead with each region 
embedding colored by its annotation from the ENCODE SCREEN project. e. Schematic of the global TSS 
distance analysis. The distance of each contextualized region embedding to the pELS centroid is found. In 
general, regions with a high TSS distance will have a larger distance. f. Distribution of Pearson correlation 
coefficients when correlating a regions annotated TSS-distance to its distance to the pELS centroid. g. 
Confusion matrix for our cell line classifier, limited to the top ten cell lines in the bulk dataset.

Single-cell assays are redefining chromatin biology, yet aggregate profiles from bulk ATAC-seq, ChIP-

seq, and DNase-seq are still far more common, and will likely continue to be produced in the future 

due to dramatically lower cost, as they provide useful information for homogeneous samples or 

when cell-to-cell heterogeneity is not important. In recent years the number of BED files uploaded 

to the Gene Expression Omnibus have increased by more than 10,000 files per year, most of them 

from bulk experiments of many varieties93,133. To help manage and interpret this growing archive, we 

recently developed BEDbase – a unified platform for aggregating, analyzing, and serving genomic 

region data. We therefore asked whether Atacformer, trained on single-cell data, could generalize to 

the more heterogenous and voluminous profiles posted to GEO, and thereby provide practical utility 

for BEDbase, such as by imputing missing key metadata or enhancing region annotations.

70



To assess this, we fine-tuned Atacformer on BED files annotated with hg38 on BEDbase. We 

downloaded and tokenized over 35,000 BED files and continued pretraining atacformer-base 

using ELECTRA-style token replacement prediction for 10 epochs, yielding atacformer-bb. Using 

atacformer-bb, we generated embeddings for BED files from the top 10 cell lines and assays in 

our bulk data training set. The embeddings clustered by both assay type (Figure  5.4A) and cell 

line (Figure 5.4B), indicating the model learned general patterns of regulatory biology. As shown in 

Figure 5.4A, assays such as ChIP-seq, TF ChIP-seq, DNase-seq, and ATAC-seq formed distinct groups, 

suggesting that the model captured assay-specific signal features. Meanwhile, the (Figure  5.4B) 

shows that the same embeddings also separated cleanly by biological source, with individual clusters 

corresponding to cell lines such as HEK293, K562, GM12878, and HeLa.

To investigate whether token-level embeddings also reflect learned biology, we annotated each of the 

model’s 890,704 regions with its distance to the closest transcription start site (TSS) and its detailed 

region classification according to the ENCODE registry of cCREs (see Methods). We reasoned that 

the contextualized region embeddings produced by the transformer would enable rich information 

to be encoded in the embeddings. When visualizing an example BED file with UMAP, we found 

that contextualized embeddings clustered by TSS distance (Figure 5.4C). To confirm that the model 

is distinguishing promoters from enhancers, we also colored the contextualized region embeddings 

by their region annotations (Figure 5.4D). We found that regions clustered broadly into groups of 

proximal enhancer-like sequences (pELS) and distal enhancer-like sequences (dELS).

We next sought to interrogate whether this trend held broadly for all BED files in the training dataset. 

For this, we developed a novel assessment score inspired by our previous work on region embedding 

evaluation105 called the TSS distribution score. Briefly, the score is computed for each region using 

three steps. First, we identify the pELS centroid in embedding space. Second, each regions embedding 

distance to this centroid is computed. Finally, we correlate a each regions TSS-distance to its distance 

to the pELS centroid. In general, we hypothesized that regions close to the centroid would also 

have corresponding small TSS distances. Conversely, regions far away from the centroid would have 

corresponding large TSS distances.

We found that the contextualized embeddings for BED files consistently has TSS distribution 

scores greater than zero, reinforcing the fact that the contexualized embeddings are capturing 

learned regulatory biology across cell lines and assay types. As a control, we also computed the 

TSS distribution score for shuffled labels, which yielded a distribution of scores centered at zero 

(Figure 5.4F).

71



Finally, we sought to use Atacformer to help annotate data on BEDbase. Many files in the database 

are missing critical metadata – particularly cell line annotations (Supplementary Figure A.12). We 

therefore hypothesized that Atacformer could be used to impute this missing data and built a proof 

of concept pipeline to annotate missing cell line information for all BED files. Specifically, we 

hypothesized that the BED-file embeddings could be used as input to a classifier to predict the missing 

annotation.

To build the pipeline, we split our dataset into two groups: 1) BED-files with annotated cell lines 

and 2) BED-files with missing cell line annotations, but they can be inferred from the file description 

(Supplementary Figure A.13; see Methods). We use the BED-files with annotated cell lines to train 

an XGBoost decision tree model134, and then subsequently use the trained model to predict the cell 

lines for the BED-files with missing annotations, using the inferred annotations as ground truth 

labels for evaluation. The decision tree model was effective at annotating the missing cell lines. The 

model achieved an F1 score of 0.85 and an accuracy of 86% across over 275 cell lines (Figure 5.4G). 

Taken together, these results highlight how Atacformer is able to generate powerful embedding 

representations of bulk genomic interval data.

Direct raw-fragment processing with atacformer accelerates scATAC analysis

a b c

d e

fragments

Current workflow for
scATAC-seq foundation models requires

pre-processing into a count matrix

fragments

count matrixpipeline

atacformer directly
tokenizes fragments

model

embeddings

Fragments to embeddings

Fragments to embeddings

Fragments to matrix to embeddings

Fragments to matrix to embeddings

SLOW

FAST

le id e n
0
1
2
3
4
5
6

le id e n
0
1
2
3
4
5

6
7
8
9
1 0
1 1

le id e n
0
1
2
3
4
5

6
7
8
9
1 0

ArchRAtacformer SnapATAC2

Embedding generation

Fragments import and processing

Embedding generation

Matrix generation
Tokenization

700

600

500

400

300

200

100

0

T
im

e 
(s

)

Atacformer

SnapATAC2 ArchR
Atacformer

EpiAgent

700

600

500

400

300

200

100

0

Atacformer

le id e n
0
1
2
3
4
5
6

EpiAgent

le id e n

0
1
2
3
4
5
6

7
8
9
1 0
1 1
1 2
1 3
1 4

Figure 5.5: Atacformer is the only method that operates on sequence fragments directly.

a. Schematic showing the difference between Atacformers ability to generate embeddings for fragments files 
and other current scATAC-seq foundation models. b. Speed comparison of processing times for Atacformer 
with SnapATAC2 and ArchR when processing direct fragments files. Fragments file processing is grouped into 
two main steps: 1) fragments file importing and 2) cell embedding generation. c. Speed comparisons between 
Atacformer and EpiAgent count matrix processing. Count matrix processing is grouped into three main steps: 
1) matrix generation, 2) tokenization, and 3) embedding generation. d. UMAP visualizations for single-cell 

72



embeddings starting with fragments files for ArchR, Atacformer, and SnapATAC2. e. UMAP vsualizations of 
single-cell embeddings starting with count matrices.

One of the most common starting file-formats for scATAC-seq analysis is the fragments file from 10X 

genomics. This is a BED-like file that contains aligned reads for single-cells, organized by barcode. 

Therefore, it is desirable for scATAC-seq workflows to take fragments files as input for cell clustering. 

However, existing scATAC-seq deep learning models such as EpiAgent, ChromFound, and SCALE 

require count matrices as input. This necessitates a pre-processing step using a tool like ArchR 

or SnapATAC235,37 to generate the necessary input format when working with fragments files. In 

contrast, because of its tokenization procedure, Atacformer is uniquely positioned to generate single-

cell embeddings immediately from fragments files. By leveraging interval-overlap-based tokenization, 

Atacformer bypasses the need for tedious preprocessing steps and produces embeddings directly from 

fragments, enabling more flexible pipelines and zero-shot analyses. This can improve both speed and 

flexibility in analysis pipelines (Figure 5.5A).

To examine this, we obtained a new 3,000 cell dataset from flash-frozen human healthy brain tissue 

from 10X genomics. We call this brain3k. We then conducted two separate analyses: 1) fragments to 

cell embeddings, and 2) count matrices to cell embeddings. For the first analysis, starting from the 

fragments file, we processed the data in three ways: 1) using Atacformer and its native tokenizers; 

2) using SnapATAC2; and 3) using ArchR. We organized this processing into two main steps: 1) 

fragments import and filtering, and 2) embedding generation. We measured the time it took to 

conduct each step for each method (see Methods). We then used the resultant embeddings to generate 

UMAP visualizations. For the second analysis, we took the processed count matrices and fed them to 

Atacformer and EpiAgent, generating embeddings and corresponding UMAP visualizations, similarly 

measuring the time it took to conduct each step.

We first used the Atacformer tokenizers to import and tokenize the fragments, filtering by 

barcodes. We then used these tokenized fragments to generate cell-level embeddings for each cell. 

In timed comparisons, the end-to-end wall time for Atacformer – comprising fragments import/

filtering and embedding generation – was substantially lower than either SnapATAC2 or ArchR 

(Figure  5.5B). Most of the runtime in the baseline pipelines was spent on I/O-heavy import and 

matrix construction, whereas Atacformer’s Rust-backed interval-overlap tokenization minimizes this 

overhead by operating directly on the fragments file91.

Then we next sought to use the processed count matrices as input into Atacformer and compare the 

performance against EpiAgent, a recently published scATAC-seq foundation model. We found that 

the majority of the processing time for both methods was spent on pre-processing the count matrix 

73



into a suitable input format. However, once this step was complete, Atacformer generated embeddings 

substantially faster than EpiAgent. In particular, the Atacformer tokenization and embedding 

generation steps were approximately 2.5x faster than EpiAgent’s equivalent steps (Figure 5.5C).

Using the resulting embeddings from the fragments and count matrices, we visualized cells with 

UMAP and performed Leiden clustering. For the fragments-based analysis, Atacformer produced 

coherent, well-separated clusters that were comparable to or better resolved than those obtained 

from matrices built with SnapATAC2 or ArchR (Figure 5.5D). Notably, Atacformer achieves this in 

a zero-shot manner – without peak calling or an intermediate peak-by-cell matrix - by leveraging 

fragment co-occurrence structure within cells. For the count-matrix-based analysis, Atacformer again 

produced well-separated clusters that were comparable to or better resolved than those from EpiAgent 

(Figure 5.5E).

Together, these results demonstrate that Atacformer enables practical, faster, and more flexible 

scATAC-seq workflows: embeddings can be generated directly from fragments, eliminating 

prerequisite matrix construction and supporting downstream analyses (e.g., clustering) with minimal 

preprocessing.

74



Contextualized region embeddings from scATAC-seq data infers cryptic TSSs

a

r101 r56 r2 r99 r1764tokens

initial region
embeddings

transformer
blocks

regions
Mono
Mono
B cell
B cell
T cell

contextualized
embeddings

small TSS distance
near the

dELS centroid

putative icTSSs

dELS
centroid

pELS
centroid

b

c

d

e

monocytesb cells

100 101 102 103 104 105 106

Distance to nearest TSS (bp)

100 101 102 103 104 105 106

Distance to nearest TSS (bp)

D
is

ta
n

ce
 t

o 
pE

L
S 

ce
n

tr
oi

d
(e

m
be

dd
in

g 
sp

ac
e)

D
is

ta
n

ce
 t

o 
pE

L
S 

ce
n

tr
oi

d
(e

m
be

dd
in

g 
sp

ac
e)

8

10

12

14

16

18

20

22

8

10

12

14

16

18

20

22

identification of icTSSs in monocytes and B cells

icTSSs icTSSs

CD14+ Monocyte
h3k4me3 signal

CD20+ Naive B cell
h3k4me3 signal

Shared icTSS's

Atacformer universe

250bp

0

180

0

180

chr4:102,623,883-102,627,459

102,625,000 102,626,000

bigWigAverageOverBed mean signalbigWigAverageOverBed mean signal

Fr
eq

u
en

cy

Fr
eq

u
en

cy

5 10 15 20 25 30

10

20

30

40

50

60

0

10

20

30

40

50

0
2.5 5 7.5 10 12.5 15 17.5

icTSSs h3k4me3 enrichment icTSSs h3k4me3 enrichment

CD14+ MonocyteNaive CD20+ B cell

Figure 5.6: Atacformer uncovers weak promoters using scATAC-seq data alone.

a. Schematic of generating contextualized region embeddings from a single cell. b. Schematic of the canonical 
contextualized latent space for co-accessible regions in a single-cell. In general, distal enhancer like sequences 
cluster together while proximal enhancer like sequences cluster together. c. Plot of annotated TSS distance 
versus pELS centroid distance. We highlight paradoxical regions which are both annotated as very far from 
the TSS and found very close to the pELS centroid. d. Example of an icTSS with strong H3K4me3 signal 
despite no annotated promoter nearby. e. Histograms of H3K4me3 enrichment in a randomyly generated 
background distribution compared to the icTSSs in both CD14+ monocytes and CD20+ Naive B cells.

A primary strength of the Atacformer architecture is its ability to generate token-level embeddings 

for individual cis-regulatory elements (cCREs). Unlike other foundation models that produce cell-

level representations, Atacformer enables direct investigation of relationships between discrete, 

well-annotated, genomic regions within a single cell. Building on our initial exploration with bulk 

ATAC-seq data (Figure 5.4C), we applied this approach to single-cell data, capturing contextualized 

embeddings for each region prior to aggregation into cell-level representations (Figure 5.6A).

75



As with bulk data, single-cell region embeddings were broadly structured by annotation, clustering 

according to TSS distance and their classification as proximal (pELS) or distal (dELS) enhancer-like 

sequences (Figure 5.6B). Within this structure, however, we identified a discordant subset of regions. 

These elements were annotated as highly distal from any TSS, yet their embeddings clustered tightly 

with the pELS centroid – a location dominated by promoter-proximal regions. We hypothesized that 

this discrepancy reflects functionally important sites, such as weak promoter regions, which we term 

inferred cryptic TSSs (icTSSs; pronounced “iced-teas”).

Cryptic Transcription Start Sites (TSSs) are genomic locations that initiate transcription but are not 

the primary annotated start sites for known genes. Often found in intronic or intergenic regions, they 

can be activated in specific cellular contexts or by genetic perturbations, producing truncated proteins 

or novel non-coding RNAs that may alter cellular function135.

To investigate this, we subsampled 10,000 single-cells from the Luecken2021 dataset for CD14+ 

monocytes and naïve CD20+ B cells. For each cell, contextualized co-accessible region embeddings 

were generated, and each region’s distance to the nearest TSS was plotted against its distance to 

the pELS centroid. Both cell types exhibited a modest but positive correlation between these metrics 

(Spearman’s ρ = 0.30 and 0.29, respectively). We then defined icTSSs as regions annotated as highly 

distal from a TSS yet paradoxicaly embedded very close to the pELS centroid (Figure 5.6C). To validate 

that icTSSs represent latent promoter regions, we obtained H3K4me3 ChIP-seq data for both cell types 

from the ENCODE consortium136. Briefly, H3K4me3 is a histone modification in which three methyl 

groups are added to the fourth lysine of histone H3. It is a canonical promoter mark, strongly enriched 

at transcription start sites where it stabilizes the transcriptional machinery. Thus, enrichment of 

H3K4me3 provides strong evidence that a region harbors promoter activity.

We found that icTSSs were strongly enriched for H3K4me3 (Figure 5.6D; Supplementary Figure A.14). 

To assess statistical significance, we constructed null distributions by repeatedly sampling random 

region sets from the Atacformer vocabulary and comparing their signal overlap with H3K4me3 (see 

Methods). Against this background, monocyte-specific icTSSs showed a 6.33-fold enrichment for 

monocyte H3K4me3 peaks, while B-cell icTSSs showed 6-fold enrichment for B-cell peaks (empirical 

p < 0.001 in both cases) (Figure 5.6E).

Together, these results provide strong evidence that Atacformer’s contextualized embeddings can 

identify bona fide weak promoters directly from ATAC-seq data, and that this signal is cell-type 

specific.

76



Discussion

Atacformer introduces a general-purpose transformer-based foundation model for chromatin 

accessibility data, demonstrating strong performance across a diverse set of tasks, including cell-type 

clustering, fragment file processing, bulk ATAC-seq embedding, and multimodal integration with 

RNA-seq. Unlike prior models, Atacformer explicitly tokenizes genomic intervals as discrete units and 

discards reliance on positional encodings, instead encouraging the model to learn contextual biological 

relationships directly from data. This aspect of Atacformer directly builds on our previous work with 

learning genomic region embeddings103,104.

One of Atacformer’s most impactful contributions is its ability to operate directly on raw fragment 

files, bypassing the need for intermediate matrix generation. This greatly reduces computational 

overhead and processing time, making it especially valuable for large-scale or time-sensitive analyses. 

Compared to existing scATAC pipelines like SnapATAC2 and ArchR, Atacformer achieves comparable 

biological fidelity while accelerating analysis by 80% in our benchmarks. This positions Atacformer 

not just as a new method, but as a fundamentally streamlined alternative to conventional workflows.

Our results show that Atacformer’s pre-training strategy, based on ELECTRA-style replaced token 

detection, enables generalization across both single-cell and bulk data. Fine-tuning on BEDbase bulk 

datasets reveals that Atacformer embeddings encode biological information such as assay type and 

cell line identity even in the absence of labels. Token-level embeddings are organized by promoter-

enhancer distance without ever having seen explicit TSS annotations during training, underscoring 

the model’s ability to infer global regulatory structure from local context alone.

By integrating Atacformer with Geneformer, we further demonstrate Atacformer’s extensibility to 

multimodal contexts. The CRAFT framework highlights that chromatin-accessibility embeddings can 

align with transcriptomic signals in a shared latent space, enabling cross-modal retrieval and RNA 

imputation from ATAC alone. This not only expands Atacformer’s applicability to joint profiling 

datasets, but also opens the door for future extensions such as natural language and epigenome 

integration or DNA methylation-RNA alignment using similar dual-encoder strategies.

While Atacformer achieves strong results with fewer parameters than some contemporary models, 

several limitations remain. First, the lack of positional encoding–while intentional–may hinder tasks 

requiring spatial resolution, such as enhancer-promoter linking across large genomic distances. 

Second, our approach to fragment tokenization is sensitive to the predefined vocabulary and 

resolution, which could affect generalization across genome builds or non-human species. Finally, our 

77



evaluations–particularly in multimodal alignment–were limited to well-annotated datasets; broader 

assessments in low-quality or noisy settings are needed.

Looking ahead, several avenues for extending Atacformer’s capabilities are promising. These include:

• Longer context windows or streaming architectures for encoding ultra-complex single-cell profiles.

• Generative pre-training approaches (e.g. diffusion or masked span prediction) to enable more 

flexible inference tasks.

• Application to clinical and diagnostic datasets, especially in cancer, where chromatin structure is 

often perturbed.

In conclusion, Atacformer serves as both a performant model and a software framework for ATAC-

seq analysis. Its general-purpose embeddings, fragment-level input pipeline, and compatibility with 

other models make it a powerful tool for epigenomic research. By bridging bulk and single-cell assays, 

integrating modalities, and enabling fast and interpretable analysis, Atacformer contributes to the 

growing ecosystem of foundation models in biology and offers a blueprint for future advances in 

genomic machine learning.

78



Chapter 6: Conclusions and future work

Overview and Summary of Contributions

The goal of this work was to develop a unified framework for analyzing genomic interval data – 

particularly single-cell ATAC-seq (scATAC-seq) – through modern machine learning and transfer 

learning. This was achieved through three key contributions that together form a scalable and 

interpretable foundation and framework for chromatin accessibility analysis through democratized 

deep learning models. At its core, this dissertation conceptualizes genomic regions as discrete, 

linguistic tokens, adapting natural language processing (NLP) concepts and modeling strategies to 

epigenomics. This, in turn, develops infrastructure and subsequent foundation models that learn 

generalizable regulatory representations transferable across datasets and biological contexts.

First, we developed high-performance infrastructure for data preprocessing and standardization called 

the gtars toolkit. Written in Rust with Python bindings, gtars provides efficient handling of large-

scale genomic interval data and utilities for two key tasks: first, defining region universes from large 

collections of peak calls, and second, tokenizing individual datasets against these universes. This 

infrastructure facilitates consistent data representation by ensuring that all datasets share a common 

vocabulary of genomic regions, which is critical for enabling transfer learning in downstream models. 

Furthermore, gtars’ performance and usability lower the barrier to entry for researchers seeking to 

apply machine learning to chromatin accessibility data, as well as ensuring that these tools fit into the 

broader machine learning ecosystem.

Second, we introduced scEmbed, a Word2Vec-inspired model demonstrating that pre-trained region 

embeddings can be reused across datasets. Trained on large chromatin accessibility corpora, 

scEmbed learns fixed embeddings for genomic regions that encode shared regulatory context. These 

embeddings enable rapid analysis and transferability across studies without retraining, establishing 

the feasibility and importance of stable, shared token vocabularies in genomic modeling. However, 

scEmbed’s static embeddings revealed limitations in small, static representations that failed to 

generalize to cell-state-specific regulatory dynamics, motivating the need for larger, more flexible 

models capable of contextual understanding.

Finally, to address these limitations, we developed Atacformer, the central contribution that realizes 

the core vision of this work: a transformer-based foundation model that generates contextualized 

region embeddings by incorporating cell-level chromatin accessibility context. Atacformer captures 

complex regulatory dependencies and generalizes across biological conditions, performing well 

79



in zero-shot settings for clustering, annotation, and batch correction. In parallel, we introduced 

the CRAFT model, a dual-encoder architecture linking Atacformer with Geneformer to jointly 

model chromatin accessibility and gene expression, illustrating the potential for unified multiomic 

embeddings that was envisioned from the beginning of this research program. We finally explored the 

biological insights enabled by these models, demonstrating that they capture meaningful regulatory 

relationships, identify cryptic promoters, and reflect functional relatedness among genomic regions, 

highlighting the models interpretability and biological relevance.

Together, these components form a continuous pipeline from disparate, raw genomic intervals to 

contextual representations, which is anchored in shared vocabulary, interpretability, and scalability.

Technical limitations and challenges

Through the development of gtars, scEmbed, and Atacformer, we have gained critical insights into 

the capabilities and constraints of our current approaches. The challenges encountered throughout 

this research have revealed important boundaries of existing methods and highlighted opportunities 

for future innovation. Key technical limitations identified through this work include:

1. Data imbalance and diversity: Training data remain biased toward well-characterized tissues, 

cell types, and experimental conditions, limiting generalization to rare or novel biological contexts.

2. Tokenization strategies: Current approaches employ relatively simple, fixed-region tokenization 

that makes critical assumptions about regulatory element boundaries and completely omits order 

and spacing information between regions.

3. Interpretability: While models demonstrate strong performance on cell-level tasks, interpretation 

of contextualized region embeddings remains underdeveloped, limiting our ability to extract 

mechanistic insights about regulatory grammar and interactions.

4. Computational scalability: Computational demands present dual challenges—scaling down 

to enable accessible inference for resource-constrained researchers, and scaling up to extend 

context length for processing comprehensive genomic datasets like bulk ATAC-seq and multiomic 

experiments.

We expand on these limitations in the next section, outlining specific next steps to address each 

challenge and advance the state of the art in computational epigenomics.

80



Future Directions: Improving generalization, efficiency, and 

interpretability of regulatory genomics models

Future aim 1: Scaling the training Atlas

GEO, SRA, HCA, 
and CellXGene

High performance
scATAC-seq processing

pipelines

Increased atlas
scale and diversity

(~100M cells)
Model pre-training

Improved 
downstream metrics
and generalization

BPCells atacformer

HC Kmeans Louvain

Figure 6.1: Overview of the expanded training atlas and its components.

Motivation

Atacformer was trained on a substantial corpus of single-cell ATAC-seq data (~1.2 million 

cells); however, this training set remains biased toward well-characterized tissues, cell types, and 

experimental conditions. Specifically, the dataset is currently dominated by brain, immune, and tonsil 

cells (Figure  5.1B). This bias is reflected in model performance, with reduced performance when 

processing datasets originating from biological contexts outside the models training distribution 

(kidney, liver, rare cell types; Supplementary Figure A.15). In contrast, foundation models in natural 

language processing (NLP) have demonstrated that massive, diverse training corpora are critical 

for achieving strong generalization and reducing bias45. To achieve similar benefits in regulatory 

genomics, scaling the training atlas to encompass tens or hundreds of millions of cells spanning all 

major human tissues, developmental stages, and disease states would be a logical next step. Indeed, 

foundation models for transcriptomics are already being trained on datasets of this scale with an 

updated Geneformer model being trained on over 100 million cells137 and the release of Tahoe-x1, a 

new transcriptomics foundation model trained on 100 million cells138. Expanding the training corpus 

for chromatin accessibility models like Atacformer could improve generalization and reduce bias in 

downstream analyses.

Proposed approach

Several recent technological developments now make it feasible to scale training corpora to 100 

million cells or more. First, leveraging the computational scalability of tools like BPCells139, which offer 

improved memory efficiency for processing large-scale datasets compared to our initial preprocessing 

pipeline (SnapATAC237), would facilitate such expansion. Second, Oxbow140 — a unification layer built 

on Apache Arrow with Rust-based I/O—enables efficient handling of next-generation sequencing data 

as in-memory or larger-than-memory data frames across Python and R, streamlining cross-platform 

81



data integration. Together, these advances address the storage, I/O, and processing bottlenecks that 

previously limited large-scale data curation.

Building on this infrastructure, one could systematically collect single-cell ATAC-seq datasets from 

public repositories including GEO, SRA, the Human Cell Atlas, and CellXGene, targeting a training 

corpus exceeding 100 million cells that spans all major human tissues, developmental stages, and 

disease states. Such an effort could prioritize underrepresented biological systems—diverse neuron 

subtypes, rare immune populations, and organoid models—to mitigate the tissue and cell-type 

biases observed in the current Atacformer training set. A robust quality control pipeline would 

harmonize data from heterogeneous sources, accounting for differences in sequencing depth, peak 

calling strategies, and experimental protocols. Stratified sampling strategies would ensure balanced 

representation across tissues and cell types during model training, reducing the risk of overfitting to 

well-studied biological contexts.

Expected impact and evaluation

Scaling the training atlas to 100 million cells would be expected to yield models with substantially 

improved generalization across diverse biological contexts. Such models could demonstrate better 

zero-shot performance on previously unseen tissues and cell types, reduced bias in cell-type 

annotation and clustering, and more robust representations for rare cell populations currently 

underrepresented in existing training data. These improvements would establish a stronger 

foundation for clinical applications that require accurate modeling of diverse disease contexts and 

developmental stages.

To quantitatively assess these improvements, one could evaluate retrained models using the same 

cell-clustering benchmarks established in the original Atacformer work. Specifically, measuring 

clustering quality metrics (silhouette scores, adjusted Rand index) across held-out datasets spanning 

diverse tissues would allow comparison of performance between models trained on the original 

corpus versus an expanded 100-million-cell atlas. Particular attention could be paid to performance 

gains on underrepresented tissues (kidney, liver, rare immune populations) where the current model 

shows reduced accuracy. Additionally, assessing the model’s ability to generalize to completely 

novel datasets not represented in either training corpus would provide a rigorous test of improved 

generalization. Finally, the curated training corpus could be released as a community resource to 

support reproducibility and enable other researchers to build upon this foundation.

82



Future aim 2: Improved tokenization strategies

chr1:100-200
chr1:200-300
chr1:450-600
chr2:230-450
chr2:500-650
chr3:100-200

chrX:500-700

... ...

chr1:100-200
chrX:500-700
chr1:450-600
chr3:100-200
chr2:230-450
chr1:200-300

chr2:500-650

a b
vocabulary with

no order

vocabulary with
score per token
order by score

BED BED si
gn

al
si

gn
al

si
gn

al

high signal in
all cells

low importance

cell-type
specific signal

high importance

region/token importance based on cell-type specificity
token 1 token 2

c

si
gn

al

region/token importance based on total coverage

high low medium

d

token 2token 1

TSS

genome

1.2kb 0.4kb

highlow

region/token importance based TSS distance

Figure 6.2: Overview of the improved tokenization strategies and their components.

a. Schematic of a model vocabulary/universe that is ordered by an importance score. b. Overview of 
determining importance via cell-type specificity. c. Overview of determining importance by total corpus 
coverage. d. Overview of determining importance by TSS distance.

Motivation

The current tokenization strategies for our epigenomic foundation models face two interconnected 

challenges. First, they indiscriminately include all accessible regions detected in a single cell. Often, 

several thousand cCREs are co-accessible in any given cell. This results in very large context windows 

required to capture the full regulatory environment (Supplementary Figure A.7). This approach is 

computationally expensive and inefficient, as many of these regions are housekeeping elements or 

low-information peaks analogous to stop words in natural language processing. Second, current 

tokenization treats all regions equally and imposes no inherent order, representing each cell as an 

unordered “bag of peaks” that discards potentially important spatial relationships between regulatory 

elements.

These two problems could be addressed simultaneously through importance scoring at tokenization 

time, an approach successfully employed by other similar models (EpiAgent and Geneformer)58,62,137. 

By assigning an importance score to each region in the vocabulary, one could retain only the top 

K most critical regions, effectively reducing context window size while focusing model attention 

on functionally relevant elements. Additionally, sorting regions by importance establishes a natural 

ordering that prioritizes regulatory elements most likely to influence cellular state. This dual benefit 

83



— reduced context and imposed order — addresses both computational efficiency and biological 

interpretability (Figure 6.2A).

Finally and importantly, the choice of tokenization strategy has cascading effects on pretraining 

objectives. In developing Atacformer, we had to pivot from masked language modeling (MLM)42 to 

ELECTRA-style129 discriminative pretraining because MLM becomes computationally prohibitive for 

large vocabularies and context windows. Additionally, standard MLM assumes a fixed token order for 

masking, which is incompatible with our unordered bag-of-peaks representation. ELECTRA sidesteps 

both issues by using a discriminative objective that does not require predicting exact tokens from 

a large vocabulary. However, with improved tokenization that reduces context size and establishes 

inherent order, one could revisit MLM and explore alternative pretraining objectives that were 

previously infeasible, potentially unlocking better learned representations.

Proposed approach: Importance scoring

The first component of improved tokenization involves developing scoring functions to rank genomic 

regions by regulatory importance. Several complementary strategies could be employed:

1. Cell-type specificity metrics would identify regions with high variance across cell types, as 

these likely encode cell-type-defining regulatory programs rather than housekeeping functions 

(Figure 6.2B).

2. Signal overlap quality could assess whether a region shows weak or strong accessibility signal, 

prioritizing high-confidence peaks with robust coverage (Figure 6.2C).

3. Distance to transcription start sites could prioritize regions proximal to gene promoters, as 

regulatory elements closer to TSSs often have stronger and more direct effects on gene expression. 

This could be implemented by assigning higher importance scores to regions within a certain 

distance threshold of annotated TSSs, with scores decaying as a function of genomic distance 

(Figure 6.2D).

These metrics could be combined into a composite importance score, either through manual weighting 

or by training a machine learning classifier to predict regulatory impact based on downstream gene 

expression effects.

Proposed approach: Ordering strategies

The second component involves establishing an explicit ordering over regions, moving beyond the 

current “bag-of-peaks” representation. One straightforward approach would be to order regions by 

their importance scores, creating a ranked sequence where the most critical regulatory elements 

appear first in the token sequence. Alternatively, one could order regions by genomic distance, 

84



preserving spatial relationships between nearby regulatory elements that may form functional 

modules. This could be implemented through learned positional embeddings that encode genomic 

coordinates, allowing the model to capture distance-dependent interactions. A more sophisticated 

approach, inspired by ChromFound’s complex genomic positional embeddings, would combine 

learnable chromosome embeddings in addition to other spatial features like distance along the 

genome. Balancing these ordering strategies with computational tractability remains a key challenge, 

as distance-aware attention mechanisms can introduce additional overhead.

Expected impact

Improved tokenization strategies would be expected to yield two major benefits. First, by 

incorporating spatial relationships and regulatory importance into token representations, such 

approaches could improve performance across downstream tasks including cell-type clustering, 

region annotation, and cellular state prediction. Ordering regions by importance or genomic position 

would allow attention mechanisms to capture biologically meaningful relationships that are currently 

obscured by the bag-of-peaks representation. This richer contextualization should translate directly 

to more accurate embeddings and better generalization across diverse biological contexts.

Second, and equally important, importance scoring would enable sustained performance with 

substantially reduced context window sizes. By retaining only the top K most critical regions per 

cell, models could maintain or even improve accuracy while processing far fewer tokens. This would 

yield a more efficient and practically usable model—reducing training time, lowering inference costs, 

and enabling deployment on less powerful hardware. The ability to achieve comparable or superior 

performance with smaller context windows would democratize access to these foundation models and 

accelerate iteration during methods development.

Future aim 3: Token-level interpretability and fine-tuning

self-attention
matrix

r101 r56 r2 r99 r1764tokens

co-accessible regions
tokenized into universe

regions

ce
ll

s

BED

pre-trained
atacformer

model

r1

r2

highly-correlated regions

chr1:200-300

chr1:600-700

a

r101 r56 r2 r99 r1764tokens

co-accessible regions
tokenized into universe

BED

pre-trained
atacformer

model

BED
bulk ATAC-seq

data

contextualized
embeddings

interaction
head

pairwise
interaction

matrix

corresponding hi-c
data from bulk tissue

fine-tune to
generate hi-c

TAD boundaries

Figure 6.3: Overview of the further directions for token-level interpretability and fine-tuning.

85



a. We can investigate region-pairs through the attention matrix. Strong attention scores between two regions 
might indicate biological relationships. b. Using bulk ATAC-seq data, we can fine-tune foundation models to 
predict chromatin contacts between regions.

Motivation

While Atacformer demonstrates strong performance on cell-level tasks such as clustering and 

annotation, interpretation and analysis of contextualized region embeddings remains underdeveloped. 

Our initial exploration of token-level embeddings revealed promising signals. For instance, we 

identified putative latent transcription start sites within weak promoter regions by examining how 

these regions cluster in embedding space to reveal paradoxic patterns: regions annotated as being 

far from transcription start sites while clustering with known TSSs (Figure  5.6). However, this 

only scratches the surface of what token-level analysis could reveal about regulatory grammar and 

chromatin organization. Two complementary directions could substantially advance understanding 

of these models: 1) attention-based relationship discovery and 2) token-level fine-tuning for region 

annotation tasks.

Proposed approach: Attention matrix analysis

Transformer attention matrices encode pairwise relationships between tokens, and attention weight 

analysis has proven valuable in natural language processing for uncovering syntactic dependencies 

and semantic relationships141,142. In genomics, attention patterns could reveal functional regulatory 

connections that are not apparent from sequence features alone. Systematic extraction and analysis of 

attention weights between region pairs across large cohorts of cells could be performed. Consistently 

high-attention pairs across diverse cell types would suggest stable regulatory interactions, such 

as housekeeping promoter-enhancer links, while cell-type-specific attention patterns could identify 

dynamic, context-dependent regulatory wiring. These attention-derived relationships could be used 

to predict promoter-enhancer pairs, infer transcription factor co-binding networks, and identify 

compensatory or redundant regulatory elements (Figure 6.3A). Validation against orthogonal data 

sources like Hi-C contact maps, ChIA-PET loops, and expression quantitative trait loci (eQTLs) 

would assess whether attention weights capture biologically meaningful three-dimensional chromatin 

interactions and regulatory logic.

Proposed approach: Token-level fine-tuning

In our current work, we explored fine-tuning strategies exclusively at the cell level, training models 

to predict cellular phenotypes or cluster assignments. However, token-level fine-tuning—analogous 

to named entity recognition (NER) in natural language processing—remains unexplored and could 

unlock new capabilities42,143. One compelling application would involve training models to predict 

chromatin contact pairs using small Hi-C datasets as supervision. This would create a generative 

model capable of predicting topologically associating domains (TADs) and long-range interactions 

86



directly from scATAC-seq data, effectively learning to infer three-dimensional genome organization 

from accessibility patterns alone. Another promising direction involves region annotation tasks, 

where models could learn to classify individual regions (e.g., as active enhancers, silencers, or 

insulators) based on the broader regulatory context of the cell. This context-aware annotation 

would differ fundamentally from static chromatin state annotations like ChromHMM, as it would 

account for the dynamic regulatory environment captured by the full set of accessible regions in 

each cell (Figure 6.3B). Both applications would leverage the rich contextual information encoded in 

Atacformer’s learned representations, extending the model’s utility beyond cell-level predictions to 

region-level biological insights.

Expected impact

These advances would yield two major benefits. First, token-level analysis would provide mechanistic 

insights into regulatory grammar that are currently inaccessible—revealing novel promoter-enhancer 

wiring, identifying context-dependent regulatory switches, and generating testable hypotheses about 

three-dimensional genome organization. Second, fine-tuned models for contact prediction and region 

annotation could be released as community resources, enabling researchers to leverage foundation 

model representations for specific biological questions without requiring computational expertise or 

large-scale datasets. By extending capabilities from cell-level clustering to region-level insights, these 

directions would democratize sophisticated regulatory genomics analysis.

Future aim 4: Context window optimization — exploring the extremes

Motivation

Throughout Atacformer development, we employed a fixed context window of 8,192 tokens, chosen 

to accommodate the majority of single cells while remaining computationally tractable. However, 

this one-size-fits-all approach leaves substantial room for optimization in both directions. Preliminary 

analysis revealed that while many cells benefit from large context windows, a significant proportion 

may be adequately represented with far fewer tokens (Supplementary Figure  A.9), particularly 

when coupled with improved tokenization strategies that prioritize the most informative regions. 

Conversely, our ability to analyze bulk ATAC-seq data remains severely limited, as bulk datasets often 

contain 50,000–200,000 accessible regions per sample, far exceeding our current capacity. Exploring 

both extremes—smaller context windows for efficiency and larger windows for comprehensive 

genomic coverage—would unlock new capabilities and broaden the applicability of foundation models 

in regulatory genomics.

87



Proposed approach: Scaling down with efficient architectures

The first direction involves determining how small context windows can be while maintaining 

performance. This could be achieved by combining tokenization strategies with importance scoring 

to retain only the most informative regions. Systematic experimentation with reduced context sizes 

(e.g., 512, 1,024, 2,048 tokens) could identify the optimal trade-off between biological coverage and 

computational efficiency. This could be paired with advanced self-attention implementations such as 

state space models (Mamba, S4)64,85 that offer subquadratic scaling with sequence length, dramatically 

reducing training and inference time. Additional efficiency gains could come from model compression 

techniques like quantization to create lightweight variants suitable for CPU-based inference. 

The goal would be to produce models analogous to the sentence-transformer family in natural 

language processing130: fast, efficient, and deployable in local environments without specialized 

hardware, enabling researchers with limited computational resources to leverage foundation model 

representations.

Proposed approach: Scaling up for bulk data integration

The second direction involves extending context windows to accommodate comprehensive bulk 

ATAC-seq datasets, which contain orders of magnitude more accessible regions than single-cell 

data. Our initial bulk data analysis was constrained to BED files with only a few thousand 

regions to fit within the 8,192-token limit, severely restricting the diversity and complexity of 

bulk datasets that could be analyzed (Figure  5.4). To address this, one could explore cutting-edge 

long-context architectures such as sparse attention mechanisms (Longformer83, BigBird84), memory-

efficient implementations (Flash Attention85), or hybrid architectures inspired by ChromFound63 

that combine local and global attention patterns. Target context lengths of 50,000–100,000 tokens 

would enable processing of full bulk ATAC-seq samples, allowing models to capture long-range 

regulatory interactions and global chromatin architecture. While these approaches may require 

high-performance computing environments, the ability to integrate bulk data alongside single-cell 

data would create a unified framework for analyzing chromatin accessibility across experimental 

modalities. This capability would be particularly valuable for platforms like BEDbase, which curates 

large collections of bulk genomic datasets.

Expected impact

Optimizing context windows in both directions would produce complementary benefits. Smaller, 

efficient models would democratize access to foundation model capabilities, enabling local 

deployment, faster iteration during analysis, and broader adoption in resource-limited settings. This 

would parallel the success of sentence-transformers in making NLP embeddings accessible to any 

researcher with a laptop. Conversely, extended context models would unlock comprehensive analysis 

88



of bulk ATAC-seq data, enabling integration of diverse experimental modalities and providing insights 

into genome-wide regulatory architecture that are currently inaccessible. Together, these advances 

would create a flexible ecosystem of models tailored to different computational environments and 

biological questions—from lightweight tools for rapid exploration to heavyweight models for in-depth 

analysis of complex regulatory landscapes.

Broader Impact and Closing Remarks

Modern NLP and computer vision have matured immensely through standardized tokenization, 

evaluation, and model-sharing ecosystems. Genomics has lacked such a unifying framework. 

Fragmented tools, inconsistent formats, and limited reproducibility have hindered progress 

particularly for machine learning applications.

This dissertation establishes a foundation for such a framework. By defining genomic regions 

as transferable tokens, it provides the conceptual and infrastructural basis for foundation models 

in regulatory genomics. The progression from gtars (infrastructure) to scEmbed (embedding 

prototype) to Atacformer (contextual foundation model) parallels the evolution from bag-of-

words to transformers in NLP—transforming static, handcrafted features into dynamic, learnable 

representations of biological meaning.

Ultimately, this work demonstrates that gene regulation, like language, is compositional and 

contextual. Treating chromatin accessibility as a structured language enables not only better models 

but also deeper biological insight—revealing the syntax of regulation and setting the stage for a new 

generation of data-driven discovery in epigenomics.

89



References

1. Alberts, B. et al. Molecular Biology of the Cell. (Garland Science, 2002).

2. Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature 424, 147–151 (2003).

3. Ong, C.-T. & Corces, V. G. Enhancer function: new insights into the regulation of tissue-specific gene 
expression. Nature Reviews Genetics 12, 283–293 (2011).

4. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

5. Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 
518, 337–343 (2015).

6. French, J. D. & Edwards, S. L. The Role of Noncoding Variants in Heritable Disease. Trends in Genetics 36, 
880–891 (2020).

7. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature Reviews 
Genetics 13, 484–492 (2012).

8. Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nature Reviews Genetics 
14, 204–220 (2013).

9. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine 
residues in individual DNA strands. Proceedings of the National Academy of Sciences of the United States of 
America 89, 1827–1831 (1992).

10. Li, Y. & Tollefsbol, T. O. DNA Methylation Detection: Bisulfite Genomic Sequencing Analysis. Epigenetics 
Protocols 11–21 (2011) doi:10.1007/978-1-61779-316-5_2.

11. Barski, A. et al. High-Resolution Profiling of Histone Methylations in the Human Genome. Cell 129, 823–
837 (2007).

12. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-Wide Mapping of in Vivo Protein-DNA 
Interactions. Science 316, 1497–1502 (2007).

13. Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin 
immunoprecipitation and massively parallel sequencing. Nature Methods 4, 651–657 (2007).

14. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nature 
Communications 10, 1930 (2019).

15. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

16. Boyle, A. P. et al. High-Resolution Mapping and~Characterization of Open Chromatin across the Genome. 
Cell 132, 311–322 (2008).

17. Giresi, P. G., Kim, J., McDaniell, R. M., Iyer, V. R. & Lieb, J. D. FAIRE (Formaldehyde-Assisted Isolation of 
Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Research 17, 
877–885 (2007).

18. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin 
for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome 
position. Nature Methods 10, 1213–1218 (2013).

19. Lieberman-Aiden, E. et al. Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles 
of the Human Genome. Science 326, 289–293 (2009).

20. Dixon, J. R. et al. Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin 
Interactions. Nature 485, 376–380 (2012).

21. Belton, J.-M. et al. Hi-C: A comprehensive technique to capture the conformation of genomes. Methods 
(San Diego, Calif.) 58, 10.1016/j.ymeth.2012.05.001 (2012).

22. Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nature 
biotechnology 33, 1165–1172 (2015).

23. Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. 
Nature Methods 11, 817–820 (2014).

24. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 
523, 486–490 (2015).

90

https://doi.org/10.1007/978-1-61779-316-5_2


25. Zhang, Y. et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biology 9, R137 (2008).

26. Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular 
indexing. Science (New York, N.Y.) 348, 910–914 (2015).

27. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-
associated accessibility from single-cell epigenomic data. Nature Methods 14, 975–978 (2017).

28. de Boer, C. G. & Regev, A. BROCKMAN: deciphering variance in epigenomic regulators by k-mer 
factorization. BMC Bioinformatics 19, 253 (2018).

29. Pliner, H. A. et al. Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin 
Accessibility Data. Molecular Cell 71, 858–871.e8 (2018).

30. Bravo González-Blas, C. et al. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data. Nature 
Methods 16, 397–400 (2019).

31. Fang, R. et al. Comprehensive analysis of single cell ATAC-seq data with SnapATAC. Nature 
Communications 12, 1337 (2021).

32. Ji, Z., Zhou, W. & Ji, H. Single-cell regulome data analysis by SCRAT. Bioinformatics 33, 2930–2932 (2017).

33. Danese, A. et al. EpiScanpy: integrated single-cell epigenomic analysis. Nature Communications 12, 5228 
(2021).

34. Cusanovich, D. A. et al. A Single-Cell Atlas of In~Vivo Mammalian Chromatin Accessibility. Cell 174, 1309–
1324.e18 (2018).

35. Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility 
analysis. Nature Genetics 53, 403–411 (2021).

36. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with 
Signac. Nature Methods 18, 1333–1341 (2021).

37. Zhang, K., Zemke, N. R., Armand, E. J. & Ren, B. A fast, scalable and versatile tool for analysis of single-
cell omics data. Nature Methods 21, 217–227 (2024).

38. Gayoso, A. et al. A Python library for probabilistic analysis of single-cell omics data. Nature Biotechnology 
40, 163–166 (2022).

39. Xiong, L. et al. SCALE method for single-cell ATAC-seq analysis via latent feature extraction. Nature 
Communications 10, 1–10 (2019).

40. Ashuach, T., Reidenbach, D. A., Gayoso, A. & Yosef, N. PeakVI: A deep generative model for single-cell 
chromatin accessibility analysis. Cell Reports Methods 2, 100182 (2022).

41. Yuan, H. & Kelley, D. R. scBasset: sequence-based modeling of single-cell ATAC-seq using convolutional 
neural networks. Nature Methods 19, 1088–1096 (2022).

42. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers 
for Language Understanding. (2019) doi:10.48550/arXiv.1810.04805.

43. Radford, A., Narasimhan, Salimans, T. & Sutskever, I. Improving Language Understanding by Gnerative 
Pre-Training. (2018).

44. Radford, A. et al. Learning Transferable Visual Models From Natural Language Supervision. (2021) 
doi:10.48550/arXiv.2103.00020.

45. Brown, T. B. et al. Language Models are Few-Shot Learners. (2020) doi:10.48550/arXiv.2005.14165.

46. Raffel, C. et al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. (2023) 
doi:10.48550/arXiv.1910.10683.

47. Dosovitskiy, A. et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. (2021) 
doi:10.48550/arXiv.2010.11929.

48. Touvron, H. et al. LLaMA: Open and Efficient Foundation Language Models. (2023) doi:10.48550/
arXiv.2302.13971.

49. He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition. (2015) doi:10.48550/
arXiv.1512.03385.

50. Vaswani, A. et al. Attention Is All You Need. (2017) doi:10.48550/arXiv.1706.03762.

51. Ji, Y., Zhou, Z., Liu, H. & Davuluri, R. V. DNABERT: pre-trained Bidirectional Encoder Representations 
from Transformers model for DNA-language in genome. Bioinformatics 37, 2112–2120 (2021).

91

https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.1910.10683
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1706.03762


52. Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range interactions. 
Nature Methods 18, 1196–1203 (2021).

53. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 
630, 493–500 (2024).

54. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

55. Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 
706–710 (2020).

56. Sarkar, A. et al. Designing DNA With Tunable Regulatory Activity Using Score-Entropy Discrete Diffusion. 
bioRxiv 2024.05.23.595630 (2025) doi:10.1101/2024.05.23.595630.

57. Cui, H. et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. 
Nature Methods 1–11 (2024) doi:10.1038/s41592-024-02201-0.

58. Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).

59. Wu, Y. et al. Google's Neural Machine Translation System: Bridging the Gap between Human and Machine 
Translation. (2016) doi:10.48550/arXiv.1609.08144.

60. Kudo, T. Subword Regularization: Improving Neural Network Translation Models with Multiple Subword 
Candidates. (2018) doi:10.48550/arXiv.1804.10959.

61. Kudo, T. & Richardson, J. SentencePiece: A simple and language independent subword tokenizer and 
detokenizer for Neural Text Processing. (2018) doi:10.48550/arXiv.1808.06226.

62. Chen, X. et al. EpiAgent: foundation model for single-cell epigenomics. Nature Methods 1–12 (2025) 
doi:10.1038/s41592-025-02822-z.

63. Jiao, Y. et al. ChromFound: Towards A Universal Foundation Model for Single-Cell Chromatin Accessibility 
Data. (2025) doi:10.48550/arXiv.2505.12638.

64. Gu, A. & Dao, T. Mamba: Linear-Time Sequence Modeling with Selective State Spaces. (2024) doi:10.48550/
arXiv.2312.00752.

65. Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient Estimation of Word Representations in Vector Space. 
(2013) doi:10.48550/arXiv.1301.3781.

66. Morin, F. & Bengio, Y. Hierarchical Probabilistic Neural Network Language Model. in International 
Workshop on Artificial Intelligence and Statistics 246–252 (PMLR, 2005).

67. Gutmann, M. & Hyvärinen, A. Noise-contrastive estimation: A new estimation principle for unnormalized 
statistical models. in Proceedings of the Thirteenth International Conference on Artificial Intelligence and 
Statistics 297–304 (JMLR Workshop and Conference Proceedings, 2010).

68. Pennington, J., Socher, R. & Manning, C. GloVe: Global Vectors for Word Representation. in Proceedings of 
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1532–1543 (Association 
for Computational Linguistics, Doha, Qatar, 2014). doi:10.3115/v1/D14-1162.

69. Bojanowski, P., Grave, E., Joulin, A. & Mikolov, T. Enriching Word Vectors with Subword Information. 
arXiv:1607.04606 [cs] (2017).

70. Le, Q. & Mikolov, T. Distributed Representations of Sentences and Documents. in Proceedings of the 31st 
International Conference on Machine Learning 1188–1196 (PMLR, 2014).

71. Asgari, E. & Mofrad, M. R. K. Continuous Distributed Representation of Biological Sequences for Deep 
Proteomics and Genomics. PLoS ONE 10, e141287 (2015).

72. Ng, P. dna2vec: Consistent vector representations of variable-length k-mers. arXiv:1701.06279 [cs, q-bio, 
stat] (2017).

73. Du, J. et al. Gene2vec: distributed representation of genes based on co-expression. BMC Genomics 20, 
82 (2019).

74. Cho, K. et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine 
Translation. (2014) doi:10.48550/arXiv.1406.1078.

75. Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to Sequence Learning with Neural Networks. (2014) 
doi:10.48550/arXiv.1409.3215.

76. Bahdanau, D., Cho, K. & Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. 
(2016) doi:10.48550/arXiv.1409.0473.

92

https://doi.org/10.1101/2024.05.23.595630
https://doi.org/10.1038/s41592-024-02201-0
https://doi.org/10.48550/arXiv.1609.08144
https://doi.org/10.48550/arXiv.1804.10959
https://doi.org/10.48550/arXiv.1808.06226
https://doi.org/10.1038/s41592-025-02822-z
https://doi.org/10.48550/arXiv.2505.12638
https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.48550/arXiv.1406.1078
https://doi.org/10.48550/arXiv.1409.3215
https://doi.org/10.48550/arXiv.1409.0473


77. Min, X., Zeng, W., Chen, N., Chen, T. & Jiang, R. Chromatin accessibility prediction via convolutional long 
short-term memory networks with k-mer embedding. Bioinformatics 33, i92–i101 (2017).

78. Wang, H. et al. A new LSTM-based gene expression prediction model: L-GEPM. Journal of Bioinformatics 
and Computational Biology 17, 1950022 (2019).

79. Wang, S., Li, B. Z., Khabsa, M., Fang, H. & Ma, H. Linformer: Self-Attention with Linear Complexity. (2020) 
doi:10.48550/arXiv.2006.04768.

80. Xiong, Y. et al. Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention. (2021) 
doi:10.48550/arXiv.2102.03902.

81. Choromanski, K. et al. Rethinking Attention with Performers. (2021) doi:10.48550/arXiv.2009.14794.

82. Child, R., Gray, S., Radford, A. & Sutskever, I. Generating Long Sequences with Sparse Transformers. (2019) 
doi:10.48550/arXiv.1904.10509.

83. Beltagy, I., Peters, M. E. & Cohan, A. Longformer: The Long-Document Transformer. (2020) doi:10.48550/
arXiv.2004.05150.

84. Zaheer, M. et al. Big Bird: Transformers for Longer Sequences. (2021) doi:10.48550/arXiv.2007.14062.

85. Dao, T. et al. Hungry Hungry Hippos: Towards Language Modeling with State Space Models. (2022) 
doi:10.48550/arXiv.2212.14052.

86. Dao, T. FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning. (2023) 
doi:10.48550/arXiv.2307.08691.

87. Chowdhery, A. et al. PaLM: Scaling Language Modeling with Pathways. (2022) doi:10.48550/
arXiv.2204.02311.

88. Bommasani, R. et al. On the Opportunities and Risks of Foundation Models. (2022) doi:10.48550/
arXiv.2108.07258.

89. Ramesh, A. et al. Zero-Shot Text-to-Image Generation. (2021) doi:10.48550/arXiv.2102.12092.

90. Rymuza, J. et al. Methods for constructing and evaluating consensus genomic interval sets. Nucleic Acids 
Research 52, 10119–10131 (2024).

91. LeRoy, N. J. et al. Fast, memory-efficient genomic interval tokenizers for modern machine learning. 
Submitted (2025).

92. Sheffield, N. C. & Furey, T. S. Identifying and characterizing regulatory sequences in the human genome 
with chromatin accessibility assays. Genes 3, 651–670 (2012).

93. Xue, B., Khoroshevskyi, O., Gomez, R. A. & Sheffield, N. C. Opportunities and challenges in sharing and 
reusing genomic interval data. Frontiers in Genetics 14, (2023).

94. Sennrich, R., Haddow, B. & Birch, A. Neural Machine Translation of Rare Words with Subword Units. (2016) 
doi:10.48550/arXiv.1508.07909.

95. Chen, C. et al. This Looks Like That: Deep Learning for Interpretable Image Recognition. (2019) 
doi:10.48550/arXiv.1806.10574.

96. Sheffield, N. C. & Bock, C. LOLA: enrichment analysis for genomic region sets and regulatory elements in 
R and Bioconductor. Bioinformatics (Oxford, England) 32, 587–589 (2016).

97. Yan, F., Powell, D. R., Curtis, D. J. & Wong, N. C. From reads to insight: a hitchhiker's guide to ATAC-seq 
data analysis. Genome Biology 21, 22 (2020).

98. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. 
Bioinformatics (Oxford, England) 26, 841–842 (2010).

99. Neph, S. et al. BEDOPS: high-performance genomic feature operations. Bioinformatics 28, 1919–1920 
(2012).

100. Li, H. & Rong, J. Bedtk: finding interval overlap with implicit interval tree. Bioinformatics 37, 1315–1316 
(2021).

101. Feng, J., Ratan, A. & Sheffield, N. C. Augmented Interval List: a novel data structure for efficient genomic 
interval search. Bioinformatics 35, 4907–4911 (2019).

102. Feng, J. & Sheffield, N. C. IGD: high-performance search for large-scale genomic interval datasets. 
Bioinformatics 37, 118–120 (2021).

93

https://doi.org/10.48550/arXiv.2006.04768
https://doi.org/10.48550/arXiv.2102.03902
https://doi.org/10.48550/arXiv.2009.14794
https://doi.org/10.48550/arXiv.1904.10509
https://doi.org/10.48550/arXiv.2004.05150
https://doi.org/10.48550/arXiv.2004.05150
https://doi.org/10.48550/arXiv.2007.14062
https://doi.org/10.48550/arXiv.2212.14052
https://doi.org/10.48550/arXiv.2307.08691
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2108.07258
https://doi.org/10.48550/arXiv.2108.07258
https://doi.org/10.48550/arXiv.2102.12092
https://doi.org/10.48550/arXiv.1508.07909
https://doi.org/10.48550/arXiv.1806.10574


103. Gharavi, E. et al. Embeddings of genomic region sets capture rich biological associations in lower 
dimensions. Bioinformatics (Oxford, England) 37, 4299–4306 (2021).

104. Gharavi, E. et al. Joint Representation Learning for Retrieval and Annotation of Genomic Interval Sets. 
Bioengineering 11, 263 (2024).

105. Zheng, G. et al. Methods for evaluating unsupervised vector representations of genomic regions. NAR 
Genomics and Bioinformatics 6, lqae86 (2024).

106. LeRoy, N. et al. Fast clustering and cell-type annotation of scATAC data using pre-trained embeddings. 
NAR Genomics and Bioinformatics 6, lqae73 (2024).

107. Layer, R. M., Skadron, K., Robins, G., Hall, I. M. & Quinlan, A. R. Binary Interval Search: a scalable algorithm 
for counting interval intersections. Bioinformatics 29, 1–7 (2013).

108. Li, H. et al. Inferring transcription factor regulatory networks from single-cell ATAC-seq data based on 
graph neural networks. Nature Machine Intelligence 4, 389–400 (2022).

109. Mezger, A. et al. High-throughput chromatin accessibility profiling at single-cell resolution. Nature 
Communications 9, 3647 (2018).

110. Baker, S. M., Rogerson, C., Hayes, A., Sharrocks, A. D. & Rattray, M. Classifying cells with Scasat, a single-
cell ATAC-seq analysis tool. Nucleic Acids Research 47, e10 (2019).

111. Ma, W., Lu, J. & Wu, H. Cellcano: supervised cell type identification for single cell ATAC-seq data. Nature 
Communications 14, 1864 (2023).

112. Chen, H. et al. Assessment of computational methods for the analysis of single-cell ATAC-seq data. Genome 
Biology 20, 241 (2019).

113. Baek, S. & Lee, I. Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation. 
Computational and Structural Biotechnology Journal 18, 1429–1439 (2020).

114. Wang, Y., Sun, X. & Zhao, H. Benchmarking automated cell type annotation tools for single-cell ATAC-
seq data. Frontiers in Genetics 13, (2022).

115. Lin, Y. et al. scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning. 
Nature Biotechnology 40, 703–710 (2022).

116. Chen, X. et al. Cell type annotation of single-cell chromatin accessibility data via supervised Bayesian 
embedding. Nature Machine Intelligence 4, 116–126 (2022).

117. Buenrostro, J. D. et al. Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of 
Human Hematopoietic Differentiation. Cell 173, 1535–1548.e16 (2018).

118. Luecken, M. D. et al. A sandbox for prediction and integration of DNA, RNA, and proteins in single cells. 
in Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 
2) (2021).

119. Altay, A. & Vingron, M. scATAcat: cell-type annotation for scATAC-seq data. NAR Genomics and 
Bioinformatics 6, lqae135 (2024).

120. LeRoy, N. J. et al. Atacformer: A transformer-based foundation model for analysis and interpretation of 
ATAC-seq data. Submitted (2025).

121. Smith, J. P. & Sheffield, N. C. Analytical Approaches for ATAC-seq Data Analysis. Current protocols in 
human genetics 106, e101 (2020).

122. Schaefer, M. et al. Multimodal learning of transcriptomes and text enables interactive single-
cell RNA-seq data exploration with natural-language chats. bioRxiv 2024.10.15.618501 (2024) 
doi:10.1101/2024.10.15.618501.

123. Zhang, K. et al. A single-cell atlas of chromatin accessibility in the human genome. Cell 184, 5985–6001.e19 
(2021).

124. Herring, C. A. et al. Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at 
single-cell resolution. Cell 185, 4428–4447.e28 (2022).

125. Massoni-Badosa, R. et al. An atlas of cells in the human tonsil. Immunity 57, 379–399.e18 (2024).

126. Lee, A. J. et al. Characterization of altered molecular mechanisms in Parkinson's disease through cell type–
resolved multiomics analyses. Science Advances 9, eabo2467 (2023).

127. Patel, A. G. et al. The Myogenesis Program Drives Clonal Selection and Drug Resistance in 
Rhabdomyosarcoma. Developmental cell 57, 1226–1240.e8 (2022).

94

https://doi.org/10.1101/2024.10.15.618501


128. Collin, J. et al. A single cell atlas of human cornea that defines its development, limbal progenitor cells and 
their interactions with the immune cells. The Ocular Surface 21, 279–298 (2021).

129. Clark, K., Luong, M.-T., Le, Q. V. & Manning, C. D. ELECTRA: Pre-training Text Encoders as Discriminators 
Rather Than Generators. (2020) doi:10.48550/arXiv.2003.10555.

130. Reimers, N. & Gurevych, I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. (2019) 
doi:10.48550/arXiv.1908.10084.

131. Peng, Y. et al. Contrastive-learning of language embedding and biological features for cross modality 
encoding and effector prediction. Nature Communications 16, 1299 (2025).

132. Liu, L., Kim, J. & Bansal, V. Can Contrastive Learning Refine Embeddings. (2024) doi:10.48550/
arXiv.2404.08701.

133. Khoroshevskyi, O., LeRoy, N., Reuter, V. P. & Sheffield, N. C. GEOfetch: A command-line tool for 
downloading data and standardized metadata from GEO and SRA. Bioinformatics btad69 (2023) doi:10.1093/
bioinformatics/btad069.

134. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. in Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (2016). 
doi:10.1145/2939672.2939785.

135. Wei, W. et al. Chromatin-sensitive cryptic promoters putatively drive expression of alternative protein 
isoforms in yeast. Genome Research 29, 1974–1984 (2019).

136. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–
74 (2012).

137. Chen, H. et al. Quantized multi-task learning for context-specific representations of gene network 
dynamics. bioRxiv: The Preprint Server for Biology 2024.08.16.608180 (2024) doi:10.1101/2024.08.16.608180.

138. Gandhi, S. et al. Tahoe-x1: Scaling Perturbation-Trained Single-Cell Foundation Models to 3 Billion 
Parameters. bioRxiv 2025.10.23.683759 (2025) doi:10.1101/2025.10.23.683759.

139. Parks, B. & Greenleaf, W. Scalable high-performance single cell data analysis with BPCells. bioRxiv 
2025.03.27.645853 (2025) doi:10.1101/2025.03.27.645853.

140. Abdennur, N. et al. abdenlab/oxbow: v0.4.1. (2025) doi:10.5281/zenodo.17211516.

141. Vig, J. A Multiscale Visualization of Attention in the Transformer Model. in Proceedings of the 57th Annual 
Meeting of the Association for Computational Linguistics: System Demonstrations (eds. Costa-jussà, M. R. 
& Alfonseca, E.) 37–42 (Association for Computational Linguistics, Florence, Italy, 2019). doi:10.18653/
v1/P19-3007.

142. Vashishth, S., Upadhyay, S., Tomar, G. S. & Faruqui, M. Attention Interpretability Across NLP Tasks. (2019) 
doi:10.48550/arXiv.1909.11218.

143. Li, X. et al. A Unified MRC Framework for Named Entity Recognition. in Proceedings of the 58th Annual 
Meeting of the Association for Computational Linguistics (eds. Jurafsky, D., Chai, J., Schluter, N. & Tetreault, 
J.) 5849–5859 (Association for Computational Linguistics, Online, 2020). doi:10.18653/v1/2020.acl-main.519.

144. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension 
Reduction. (2020) doi:10.48550/arXiv.1802.03426.

145. Vinh, N. X., Epps, J. & Bailey, J. Information theoretic measures for clusterings comparison: is 
a correction for chance necessary?. in Proceedings of the 26th Annual International Conference on 
Machine Learning 1073–1080 (Association for Computing Machinery, New York, NY, USA, 2009). 
doi:10.1145/1553374.1553511.

146. Rosenberg, A. & Hirschberg, J. V-Measure: A Conditional Entropy-Based External Cluster Evaluation 
Measure. in Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing 
and Computational Natural Language Learning (EMNLP-CoNLL) 410–420 (Association for Computational 
Linguistics, Prague, Czech Republic, 2007).

147. Sloan, C. A. et al. ENCODE data at the ENCODE portal. Nucleic Acids Research 44, D726–D732 (2016).

148. Pliner, H. A., Shendure, J. & Trapnell, C. Supervised classification enables rapid annotation of cell atlases. 
Nature Methods 16, 983–986 (2019).

149. Sheffield, N. C., Stolarczyk, M., Reuter, V. P. & Rendeiro, A. F. Linking big biomedical datasets to modular 
analysis with Portable Encapsulated Projects. GigaScience 10, giab77 (2021).

95

https://doi.org/10.48550/arXiv.2003.10555
https://doi.org/10.48550/arXiv.1908.10084
https://doi.org/10.48550/arXiv.2404.08701
https://doi.org/10.48550/arXiv.2404.08701
https://doi.org/10.1093/bioinformatics/btad069
https://doi.org/10.1093/bioinformatics/btad069
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1101/2024.08.16.608180
https://doi.org/10.1101/2025.10.23.683759
https://doi.org/10.1101/2025.03.27.645853
https://doi.org/10.5281/zenodo.17211516
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.48550/arXiv.1909.11218
https://doi.org/10.18653/v1/2020.acl-main.519
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.1145/1553374.1553511


150. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected 
communities. Scientific Reports 9, 5233 (2019).

151. Hsu, P.-L. et al. Liger Kernel: Efficient Triton Kernels for LLM Training. (2025) doi:10.48550/
arXiv.2410.10989.

152. Wijmans, E., Huval, B., Hertzberg, A., Koltun, V. & Krähenbühl, P. Cut Your Losses in Large-Vocabulary 
Language Models. (2025) doi:10.48550/arXiv.2411.09009.

153. Morabito, S. et al. Single-nucleus chromatin accessibility and transcriptomic characterization of 
Alzheimer's disease. Nature Genetics 53, 1143–1155 (2021).

154. Huey, J. D. & Abdennur, N. Bigtools: a high-performance BigWig and BigBed library in Rust. Bioinformatics 
40, btae350 (2024).

96

https://doi.org/10.48550/arXiv.2410.10989
https://doi.org/10.48550/arXiv.2410.10989
https://doi.org/10.48550/arXiv.2411.09009


Appendix A: Supplemental figures and tables

Infrastructure extended figures
C

ol
le

ct
io

n

U
n

iv
er

se

coverage signal

Tiles

HMM

SCREEN

RB

tiles

union

LH

CC

CCF

...

C

A Universe overview

a coverage of genome by universes

Precision and recall

Universe

CTCF  ChIP  small CTCF  ChIP  large TF  ChIP

.25

.50

.75

1.

tile
s

RB

S CREEN
unio

n
CC

CCF
LH

HM
M

.00

.05

.10

.15

CTCF  ChIP  small

.25

.50

.75

1.

S CREEN
tile

s
RB

unio
n

CC
CCF

LH
HM

M

.00

.05

.10

.15

CTCF  ChIP  large

.00

.25

.50

.75

1.

tile
s

RB

S CREEN
unio

n
CC

CCF
LH

HM
M

.00

.05

.10

.15

.20

TF  ChIP

B−LCL ATAC R andom ATAC

.85

.90

.95

1.

tile
s

RB

S CREEN
unio

n
CC

CCF
LH

HM
M

.00

.05

.10

.15

.20

B−LCL ATAC

.7

.8

.9

1.

tile
s

RB

S CREEN
unio

n
CC

CCF
LH

HM
M

.00

.02

.04

R andom ATAC

b F10-score

metric

Universe

universe

HMM

LH

CCF

CC

union

S CR EEN

RB

tiles

.0

.2

.4

.6

tile
s

RB

S CREEN
unio

n
CC

CCF
LH

HM
M

CTCF  ChIP  small

.0

.2

.4

tile
s

RB

S CREEN
unio

n
CC

CCF
LH

HM
M

CTCF  ChIP  large

.0

.2

.4

tile
s

RB

S CREEN
unio

n
CC

CCF
LH

HM
M

TF  ChIP

.00

.25

.50

.75

tile
s

RB

S CREEN
unio

n
CC

CCF
LH

HM
M

B−LCL ATAC

.0

.1

.2

.3

.4

tile
s

RB

S CREEN
unio

n
CC

CCF
LH

HM
M

R andom ATAC

av
g

R
ec

al
l

P
re

ci
si

on
R

ec
al

l
P

re
ci

si
on

U
n

iv
er

se pr
ed

efi
n

ed
da

ta
-d

ri
ve

n

HMM

SCREEN

RB

tiles

union

LH

CC

CCF

precis ion

recall

Supplementary Figure A.1: Universes overview and results of base-level overlap score.

a. Different universes represent genome coverage by the collection to a different extent, example from the 
Random ATAC collection. Collection R consists of many different files, which are represented by the core 
signal track. Regions in R1, R2, R3 are best represented by CC, CCF and LH universes in terms of overlap. 
b. Average F10-score for each collection and universes assessment. Across all collections, the HMM universe 
performs the best in terms of F10 score.

97



scEmbed extended figures

B1  B

CD4 +  T a c tiva te d

CD4 +  T na ive

CD8 +  T

CD8 +  T na ive

CD1 4 +  Mono

CD1 6 +  Mono

NK

Na ive  CD2 0 +  B

cDC2
pDC

UMAP 1UMAP 1

U
M

A
P

 2

U
M

A
P

 2
a b

Supplementary Figure A.2: scEmbed clusters cells from the Luecken2021 dataset.

a. UMAP of scEmbed cell embeddings when training the model on all cell-types in the dataset, showing 
distinct clusters for each cell type. b. UMAP of the scEmbed cell embeddings after training only on T Cells.

No projection

T
ra

in
P

re
-t

ra
in

ed

1. Embed 2. Visualize
Embedding step

M
od

el

Projection path

EV-projection

E-projection

Embedding and visualization model projections

E V

E V

E V

Query data Training path Output

Shared topology

UMAP1

U
M

A
P

2

UMAP1

U
M

A
P

2

UMAP1

U
M

A
P

2

UMAP1

U
M

A
P

2

New

Regions

C
el

ls

New

Regions

C
el

ls

New

Regions

C
el

ls

Regions

C
el

ls

Atlas

No projection

No projection

E-projection

EV-projection

Data flows (Reference)

Data flows (Query)

E V

E V

E V

E V

a

b

c

Supplementary Figure A.3: scEmbed enables knowledge transfer to unseen datasets.

a. Diagram showing scEmbed’s three projection paths. b. Overview of the standard ‘no-projection’ data flow. 
c. Overview of three data flows for new data. EV-projection places the new data in the same latent space as 
the reference data.

98



b

a

HC Kmeans

Sample quantiles

T
h

eo
re

ti
ca

l q
u

an
ti

le
s

-2 -1

Louvain

0 1 2 -2 -1 0 1 2-2 -1 0

0.050

0.075

0.100

0.125

0.150

1 2

PBMC (proj)PBMC

PBMC (proj)PBMC

HC Kmeans Louvain

RAGI

C
ou

n
t

0

0.05 0.10

10

20

30

40

0.15 0.05 0.10 0.15 0.05 0.10 0.15

Supplementary Figure A.4: Distributions of the RAGI scores for all subsampled cells.

a. Distribution of RAGI scores for cells with embeddings from the new model versus projection through the 
model trained on the Buenrostro2018 dataset. b. QQ plots of the RAGI scores for cells with embeddings from 
the new model versus projection through the model trained on the Buenrostro2018 dataset.

Supplementary Table A.1: Label mapping between scEmbed and cellcano for consistent comparison of 

classification performance.

scEmbed label Cellcano label

B1 B B cells

CD4+ T activated CD4 T cells

CD4+ T naive CD4 T cells

CD8+ T CD8 T cells

CD8+ T naive CD8 T cells

CD14+ Mono Monocytes

cDC2 Dendritic cells NK NK cells

Naive CD20+ B B cells

99



Supplementary Figure A.5: Cellcano cell type annotations for PBMC dataset.

CD4 CD8 CMP Ery HS C NK

Supplementary Figure A.6: Epoch tests show that scEmbed learns well after 100 epochs.

100



Atacformer extended figures

Supplementary Table A.2: Supplementary Table 1: Detailed information about all datasets used to curate the 

single-cell atlas for Atacformer.

Dataset Tissue Disease state No. cells GSE Author

Human single-cell atlas Atlas Healthy 615,998 GSE184462 Ren 2021

Brain 107k Brain Healthy 107,057 GSE168408 Lister 2023

Atlas of tonsil Tonsil Healthy + Disease 70,775 - Massoni-Badosa 2025

Luecken2021 Blood Healthy 69,249 - Luecken2021

Parkinsons 65k Brain Disease 65,589 GSE148434 Jung 2023

Muscle 23k Muscle Disease 23,593 GSE174376 Dyer 2022

Kidney 22k Kidney Healthy 22,772 - 10X

Cornea atlas Eye Healthy 1,209 GSE155683 Lako 2021

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 4 0 0 0 0

No.  o f a cce s s ib le  re g ions  in ce ll

0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

1 2 0 0 0 0

1 4 0 0 0 0

Fr
e

q
u

e
n

c
y

Toke n Counts  Dis trib ution

Atacformer context window

Supplementary Figure A.7: Distribution of context window lengths in the Atacformer training corpus.

101



ATAC

RNA

UMAP1

U
M

A
P

2

UMAP1

U
M

A
P

2

a b

Supplementary Figure A.8: Dual UMAP visualization of both the ATAC and RNA co-embeddings.

a. ATAC and RNA co-embeddings visualized in a shared UMAP space, colored by modality. The two 
modalities are divided along a shared axis. b. ATAC and RNA co-embeddings visualized in a shared UMAP 
space, colored by cell-type. Cell-type information is preserved.

256 128 64 32

B1 B
CD4+ T activated
CD4+ T Naive
CD8+ T

CD8+ T Naive G/M prog Lymph prog
MK/E projHSC

ID2-hi myeloid prog
ILC

CD14+ Mono
CD16+ Mono
Erythroblast

NK
Naive CD20+ B cell

Normoblast
Plasma cell
Proerythroblast
Transitional B
cDC2pDC

8,192 4,096 5121,024

2048 4096

context window size

sc
or

e

1024 8192

0.2

0.0

0.4

0.6

0.8

1.0

UMAP 1

U
M

A
P

 2

a b

c

d

e

regions

ce
ll

s

cell with too many
co-accessible regions

seen by model unseen by model

to model

to model

ARI

AMI

Homogeneity

Supplementary Figure A.9: Atacformer is robust to severe degradation in context-window size.

a. Schematic showing how cells are tokenized in the Atacformer framework. When the number of tokens in 
a cell exceeds the context window of the model, we must choose which tokens to drop before processing. b. 
Schematic of the cut-off method, where we simply keep the first 𝐶 tokens in a cell, while disregarding the rest 
(𝐶 being the context-window size). c. Schematic of the random sample method, where we randomly sample 
𝐶 tokens from the cell, while discarding the rest. d. UMAP visualizations of embeddings generated from the 
Luecken2021 dataset using various context window sizes at inference time. A marked decrease in visually 
distinct clusters occurs after 512. e. Line plot of three clustering metrics as a function of context-window size. 
All plots and metrics utilized the ATAC encoder of the craft-100k-hg38 model described in Figure 5.2.

102



B1 B
CD4+ T activated
CD4+ T Naive
CD8+ T

CD8+ T Naive G/M prog Lymph prog
MK/E projHSC

ID2-hi myeloid prog
ILC

CD14+ Mono
CD16+ Mono
Erythroblast

NK
Naive CD20+ B cell

Normoblast
Plasma cell
Proerythroblast
Transitional B

atacformer-base

cDC2
pDC

a b

atacformer-ctft
Ce ll Type

B1  B

CD4 +  T a c tiva te d

CD4 +  T na ive

CD8 +  T

CD8 +  T na ive

CD1 4 +  Mono

CD1 6 +  Mono

Erythrob la s t

G/M prog

HS C

ID2 -hi m ye lo id  prog

ILC

Lym ph prog

MK/E prog

NK

Na ive  CD2 0 +  B

Norm ob la s t

Pla s m a  ce ll

Proe rythrob la s t

Tra ns itiona l B

cDC2

pDC

Supplementary Figure A.10: Fine-tuning Atacformer for a cell-clustering task improves latent space 

separation of individual cells.

a. UMAP visualization of Luecken2021 dataset clustered using atacformer-base (before fine-tuning). 
b. UMAP visualization of Luecken2021 dataset clustered using atacformer-ctft showing a marked 
improvement in clustering ability

a b

c

batch 1

batch 2

batch 3

cell type 1

cell type 2

cell type 3

batch 1
batch 2
batch 3

batch 1

batch 3
batch 2

atacformer-base

atacformer-base

atacformer-ctft

atacformer-ctft

atacformer-ctft
(fragments) EpiAgent

EpiAgent

scEmbed

scEmbed

PBMC10K Chromium V2

NK

PBMC5K NextGEM v1.1 PBMC1K NextGEM v1.1

atacformer-ctft
(fragments)

B1 B

CD8+ T Cell

cDC2

CD4+ T Cell

CD14+ Mono

G/M prog

ILC

Plasma cell

ID2-hi myeloid prog

Naive CD20+ B

Supplementary Figure A.11: Atacformer performs strong zero-shot batch correction on processed and 

unprocessed data.

a. Schematic overview of batch effects (top) and mitigation (bottom) when analyzing multiple datasets at 
once. b. UMAP visualizations of three PBMC dataset cell embeddings, colored by dataset. Atacformer visually 
exhibits equal or better clustering performance when directly producing embeddings of fragment files. c. 
UMAP visualizations of three PBMC dataset cell embeddings, colored by cell-type. Atacformer retains key 
biological information when directly producing embeddings of fragment files.

103



ChIP
-se

q

OTHER

ATAC-se
q

Hist
on

e C
hIP

-se
q

DNas
e-

Hyp
.

TF C
hIP

-se
q

Dnas
e-

se
q

Hi-C

GM
 D

nas
e-

se
q

ChIA
-P

ET

RIP
-se

q

CAGE

eC
LI

P

RAM
PA

GE

RNA-se
q

CUT&TAG

25,000

20,000

15,000

10,000

5,000

0

C
ou

n
t

Top Assays in BEDbase bulk dataset Top cell lines in BEDbase bulk dataset

Assay

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0

U
nknow

n

K56
2

Hep
G2

HEK29
3

HEK29
3T

M
CF-

7

GM
12

87
8
A54

9
HeL

a

HeL
a-

S3

HCT11
6 H1

RUES2
M

CF7

SK
-N

-S
H
78

6-
O

ASC
52

te
lo

U2O
S

M
M

.1S

KM
S-

11
PC-3

K56
2 c

ell
s

Ju
rk

at H9

M
CF1

0A

Cell line

C
ou

n
t

a b

Supplementary Figure A.12: Training dataset assay and cell line distribution for the bulk-ATAC model.

a. Distribution of assay types in the BEDbase bulk data training set. b. Distribution of the top 25 cell lines 
represented in the BEDbase bulk data training set.

T
ru

e 
ce

ll
 li

n
e

Predicted cell line

BEDBEDBEDBEDBEDBEDBED

BED
BED

BED
BED

BED
BED

BED

ChIP-seq in MC-7 ...

DNase-seq in A549 ...

description cell line

Cells were treated w/ ...
ATAC-seq in HEK293
Cancer cells assayed ...

MC-7

A549
ChIP-seq in A549

null

null

null

null

Annotated cell line
Missing cell line
Missing; can be inferred

split between annotated
and missing cell lines

train
XGBoost

training
data

generate
embeddings

filter
unknowns

model

generate
embeddings

annotate with
embeddings

and trained model

model

a

b

c

Supplementary Figure A.13: Cell line imputation for missing BEDbase data using a fine-tuned Atacformer 

model on bulk-ATAC data.

a. Schematic of the imputation procedure. b. Confusion matrix for entire cell line dataset.

104



CD14+ Monocyte
h3k4me3 signal

CD20+ Naive B cell
h3k4me3 signal

CD14+ Mono-only
icTSS's

CD20+ Naive-B-only
icTSS's

53,998,000 bp

a

0

24

0

24

203,638,000 203,639,000 203,640,000

ATP2B4

chr1

Atacformer universe

Refseq Curated

53,994,000 53,995,000 53,996,000

0

86

0

86

chr2

CD14+ Monocyte
h3k4me3 signal

CD20+ Naive B cell
h3k4me3 signal

CD14+ Mono-only
icTSS's

CD20+ Naive-B-only
icTSS's

Atacformer universe

Refseq Curated

ACYP2

b

Supplementary Figure A.14: Extra supplemental anecdotes of H3K4me3 enrichment in icTSS regions.

a. Example icTSS regions showing H3K4me3 in Monocytes. b. Example icTSS showing H3K4me3 enrichment 
in B cells.

brain 3k multiome kidney22k multiome pbmc 10k multiome

Supplementary Figure A.15: Multi-dataset analysis of Atacformer embeddings.

UAMP visualizations of Atacformer embeddings generated from multiple datasets. Cluster colors indicate 
leiden clusters generated from the combined dataset. Atacformer performs well on datasets inside its training 
distribution (Brain and blood) while struggling on datasets outside its training distribution (Kidney).

105



Appendix B: Extended methods

Common methods across results

Clustering methodologies

We use three clustering algorithms: Hierarchical clustering (HC), k-means clustering, and Louvain 

clustering. For HC and k-means, we use the scikit-learn implementations. When ground-truth 

labels were known for a particular dataset, we used the number of unique labels to set the number 

of clusters to generate. Otherwise, we used prior knowledge to estimate the number of unique cell 

populations we would expect to find. For Louvain clustering, we use the scanpy implementation. 

Louvain is agnostic to a specified number of clusters. As such, we iteratively applied clustering to 

datasets while slowly increasing the resolution value from 0 to 3. With each iteration, the number of 

clusters was stored in a list along with the corresponding resolution. Once complete, we employed 

binary search on the list to identify the resolution that gave us the desired number of clusters. This 

value was used to generate the final clustering solution.

Embedding visualization

We used uniform manifold approximation and projection (UMAP) to visualize single-cell 

embeddings144. We used the umap-learn Python package and specified two dimensions for each 

visualization. In addition, a random state of 42 was set for visualization workflows. All other 

parameters were set to package defaults

Clustering evaluation

Three scores are employed when a dataset has ground-truth labels: The adjusted rand index (ARI), the 

adjusted mutual info score (AMI), and the homogeneity score.

Adjusted Rand Index

The ARI is a metric for evaluating the similarity between two data clusterings. This is achieved by 

counting pairs that are assigned to the same cluster label. Mathematically, it is computed by:

ARI =
∑𝑖𝑗(

𝑛ij
2 ) − [∑𝑖(

𝑎𝑖
2 )∑𝑗(

𝑏𝑗
2 )]/(

𝑛
2 )

1
2[∑𝑖(

𝑎𝑖
2 ) +∑𝑗(

𝑏𝑗
2 )] − [∑𝑖(

𝑎𝑖
2 )∑𝑗(

𝑏𝑗
2 )]/(

𝑛
2 )

(1)

where 𝑛𝑖𝑗, 𝑎𝑖, 𝑏𝑗 are diagonal values, row sums, and column sums respectively from the contingency 

table that describes the frequency distribution of the cluster labels from ground-truth and predicted 

clusterings. We use the adjusted rand score function from the scikit-learn python package.

106



Adjusted Mutual Info Score

The AMI, intuitively, is a measure of the amount of information that two clusterings share. It’s used 

to evaluate how well two clusterings agree with each other145. We compute AMI through the scikit-

learn package using the adjusted mutual info score function.

Homogeneity Score

The homogeneity score is an entropy-based external cluster evaluation metric that measures how far 

from perfect an incorrect clustering solution is146. We employ the scikit-learn homogeneity score 

function to measure this metric for each dataset.

Cell-type classification evaluation

When ground-truth labels are known, we evaluate cell-type classification performance using 

accuracy, precision, recall, and F1 score. These metrics provide a comprehensive view of the model’s 

performance in assigning the correct cell types to individual cells.

F1 score

The F1 score is the harmonic mean of precision and recall, and provides a balance between these two 

measures. Precision is the number of true positives divided by the sum of true positives and false 

positives, and recall is the number of true positives divided by the sum of true positives and false 

negatives. Formally, these are defined as:

P = TP
TP + FP

(2)

R = TP
TP + FN

(3)

The F1 score is defined as:

F1 = 2 × P × R
P+ R

(4)

To compute these measures, we compare the predicted labels, denoted as 𝐿𝑝 = 𝑙𝑝1, 𝑙𝑝2,…, 𝑙𝑝𝑛, to the 

ground truth labels, denoted as 𝐿𝑔 = 𝑙𝑔1, 𝑙𝑔2,…, 𝑙𝑔𝑛, where n is the total number of data points (or 

clusters). We utilize the metrics.f1 score function from scikit-learn to compute this value.

107



Infrastructure extended methods

Gtars and uniwig

The uniwig functionality is implemented in Rust as part of our gtars library gtars, providing 

efficient genomic data processing capabilities. The tool accepts BED format files as input and uses 

efficient multi-threading to compute genome-wide coverage at single-base-pair resolution. Coverage 

computation is parallelized across chromosomes to maximize performance on multi-core systems. The 

output consists of three BigWig files representing start, core, and end coverage signals, which are 

generated using the bigtools library for compatibility with existing genomic browsers and analysis 

tools. A command-line API is provided for integration into existing workflows, with configurable 

parameters for coverage thresholds and output formats.

Universe construction methods

We implemented several methods for constructing consensus genomic interval sets, or “universes,” as 

part of our geniml library geniml.

Coverage cutoff (CC) universe

This method constructs a universe by identifying a statistically principled coverage threshold. The 

core idea is to model the probability of any given genomic position being “covered” versus “not 

covered” (background) across the entire collection of input files. The method then derives a cutoff 

value by finding all positions where the probability of being covered is greater than the probability of 

being background.

Practically, this results in a simple rule: a genomic position, 𝑖, is included in the universe if its coverage 

frequency, freq𝑐(𝑖), is greater than or equal to the average coverage across the genome (𝑆𝑐𝑔 ), where 

𝑆𝑐 is the total coverage and 𝑔 is the genome length. This provides a data-driven approach to defining 

a consensus set based on signal enrichment. And 𝑆𝑐 is computed as:

𝑆𝑐 =∑
g

i=1
freq𝑐(𝑖) (5)

Practically, we utilize the pyBigWig library to import and process the BigWig coverage files generated 

by uniwig. The final universe is constructed using numpy for efficient numerical operations.

Maximum likelihood (LH) universe

The Maximum Likelihood (LH) universe improves upon the simple coverage model by incorporating 

information about region boundaries to better preserve distinct genomic features and prevent them 

from being merged.

108

https://github.com/databio/gtars
https://github.com/databio/geniml


This method uses three separate signal tracks as input: starts, cores (coverage), and ends. It then builds 

a probabilistic model to calculate the likelihood of each genomic position belonging to one of four 

states: start, core, end, or background. Using dynamic programming, the algorithm finds the most 

likely sequence of these states across the entire genome, effectively segmenting it into a set of flexible 

regions. Finally, a filtering step is applied to remove very small or low-likelihood regions to enhance 

the quality of the final universe.

Coverage data is processed using pyBigWig for efficient BigWig file reading, while numpy provides 

the numerical computing foundation for matrix operations and array manipulations in the dynamic 

programming algorithm. For performance optimization, the method conditionally uses numba when 

available to just-in-time compile the core dynamic programming routine, significantly accelerating 

the likelihood calculations.

Hidden Markov Model (HMM) universe

The Hidden Markov Model (HMM) approach offers a more sophisticated and tunable alternative to 

the LH method. It models the genome as a sequence of four hidden states: start (0), core (1), end (2), 

and background (3). The three signal tracks (starts, cores, and ends) are treated as emissions observed 

from these hidden states.

The implementation utilizes a Poisson emission model with predefined transition matrices and lambda 

parameters that were empirically optimized. To handle large chromosomes efficiently, the algorithm 

employs a segmented prediction strategy that identifies regions containing non-zero coverage and 

applies HMM decoding only to those segments, with background state assigned to empty regions.

The method processes each chromosome independently, reading BigWig files using the pyBigWig 

library with optimized numpy array operations when available. Coverage data is stored as 16-

bit unsigned integers to minimize memory usage while maintaining precision. The core HMM 

computation uses scipy.stats for negative binomial quantile calculations and a custom Poisson 

model implementation for state prediction.

Tokenization methods

We developed the gtars-tokenizers library as a high-performance tool for mapping genomic interval 

data to predefined vocabularies, facilitating their use in machine learning applications. Written in 

Rust, we implement and make available two interval overlap algorithms: 1) a binary interval tree 

search107, and 2) an augmented-interval list method101.

109



Environment bindings

For python binings, we leverage the pyo3 crate to implement an interface that enables in-memory 

processing from python. For R-bindings, we use the extendr crate to provide a similar interface. The 

command-line interface is built using the clap crate, allowing users to specify input files, vocabularies, 

and output formats. Finally, we leverage wasm-bindgen to compile the library to WebAssembly, 

enabling its use in web applications and other environments that support WASM.

Tokenization benchmarking

For benchmarking datasets, we used the SCREEN universe from ENCODE as the reference vocabulary 

and subsampled it to create vocabularies of three different sizes: 1 million, 100,000, and 10,000 

regions147. For query datasets, we randomly downloaded ten files from ENCODE with varying numbers 

of genomic regions to assess performance across different query sizes and characteristics.

To evaluate the performance of our tokenization methods, we developed a comprehensive 

benchmarking framework using Python. The benchmarking system utilizes subprocess for command 

execution and threading for concurrent memory monitoring during benchmark runs. Memory usage 

is tracked using the psutil library, which provides cross-platform process monitoring capabilities at 

configurable intervals. Configuration management is handled through yaml for flexible test parameter 

specification, while polars provides efficient data processing and CSV export functionality for 

results analysis. The framework executes multiple repetitions of each benchmark to ensure statistical 

reliability, measuring both execution time and peak memory consumption. This automated approach 

enables systematic comparison of different tokenization algorithms across various dataset sizes and 

configurations.

Software and data availability

The gtars, uniwig and the gtars-tokenizers libraries are open-source and available on GitHub 

at https://github.com/databio/gtars. The universe creation methods are implemented in the geniml 

library, which is also open-source and available at https://github.com/databio/geniml.

110

https://github.com/databio/gtars
https://github.com/databio/geniml


scEmbed extended methods

Model architecture and training

We used the gensim python implementation of Word2Vec as the core model for scEmbed. 

Word2Vec has many configurable hyperparameters65, including context window size, embedding 

size, learning rate scheduling and number of epochs. All experiments were conducted with a fixed 

set of hyperparameters. We used defaults for scEmbed, informed by experiments on Region2Vec 

optimization105. Specifically, we use a window size of 5 and an embedding dimension of 100. We also 

use 100 epochs (Supplementary Figure A.6) for all experiments unless otherwise noted. We adopt an 

exponential learning rate schedule with a decay rate of 0.95. After training, we extract the learned 

region embeddings from the Word2Vec model and subsequently transfer them to an equivalent model 

in pytorch. This improves accessibility and interoperability with other deep learning frameworks.

Data and data processing

Detailed overview of datasets:

Luecken2021. The Luecken2021 dataset is a multimodal single-cell benchmarking dataset (27). The 

data is a first-of-its-kind multimodal benchmark dataset of 120,000 single cells from the human bone 

marrow of 10 diverse donors measured with two commercially-available multi-modal technologies: 

nuclear GEX with joint ATAC, and cellular GEX with joint ADT profiles. The data was retrieved from 

the gene expression omnibus (GEO) using the GEO accession GSE194122.

Buenrostro2018. The Buenrostro2018 dataset consists of single-cell chromatin accessibility profiles 

across 10 populations of immunophenotypically defined human hematopoietic cell types (26). 

Deduplicated single-cell bam files along with a consensus peak set were provided by Chen et. al. (13). 

Using bedtools (32), region overlaps with the consensus peak set were computed for each bam file at a 

minimum overlap of 1bp. Using the -c flag, the number of overlaps with each region in the consensus 

peak set was calculated. Overlap count files were subsequently converted into a cell by peak binary 

accessibility matrix formatted as a comma-separated-value file (csv). Finally, the binary accessibility 

csv was converted into a scanpy AnnData object using the scanpy.read csv API. This was used as input 

to the scEmbed model.

5k PBMC. The PBMC dataset comes from 10X genomics and consists of peripheral blood mononuclear 

cells (PBMCs) from a healthy donor. Three files were downloaded directly from the 10X genomics 

website: 1) the sparse peak matrix in .mtx format, 2) the cell barcode labels in tsv format, and 3) 

the consensus peak set in bed format. Using Python, along with pandas and scanpy, these files were 

processed into a scanpy AnnData object. This was used as input to the scEmbed model.

111



Synthetic Bone Marrow. The synthetic bone marrow dataset was described and provided by Chen et. al.

(13). The binary accessibility matrix was downloaded directly from the Pinello Lab’s GitHub as a .rds 

file. Using R, this file was read, parsed, and exported as a csv. Like the previous two datasets, this csv 

was processed into a scanpy AnnData object using pandas and scanpy.

Tokenization of new data

To tokenize cells, we use our previously designed genomic tokenizers91. Briefly, we take an individual 

cell and identify each region where it shows signal. We define signal as anything in the binary 

accessibility feature matrix with a value greater than zero. These regions are then collected and we 

use interval overlap arithmetic to create a set of tokenized genomic intervals for each cell. Specifically, 

we employ the Augmented Interval list101 to perform fast, memory-efficient overlap computation 

between a query cell and the target universe/vocabulary. These tokens are then shuffled and fed into 

the Word2Vec model for training.

Model benchmarking and evaluation

To validate scEmbed, we followed an earlier approach112 to benchmark it on clustering tasks 

using published reference scATAC data. We leveraged four main datasets in this work: 1) the 

Buenrostro2018 dataset, single-cell chromatin accessibility profiles from 10 human hematopoietic cell 

types117; 2) Luecken2021, a multimodal single-cell benchmarking dataset of 120,000 single cells from 

the human bone marrow of 10 diverse donors measured with two commercially available multimodal 

technologies118; 3) 10X genomics 5k PBMCs, a single-cell dataset of 5000 peripheral blood mononuclear 

cells from a healthy donor; and 4) a synthetic bone marrow dataset, a binary accessibility dataset 

described and provided by Chen et al.112.

We benchmarked scEmbed on the Buenrostro2018 dataset117 as well as a more recent and 

comprehensive scATAC-seq dataset from Luecken2021118. We trained scEmbed for 100 epochs 

(Supplementary Figure A.6) then used the resulting region embeddings to construct cell embeddings. 

Following previous benchmarking procedures, we clustered the cell embeddings with three clustering 

methods: K-means, hierarchical clustering (HC), and Louvain clustering. There are two scenarios for 

which we can evaluate clustering: known ground-truth labels and unknown ground-truth labels. The 

synthetic bone marrow, Buenrostro2018, and Luecken2021 datasets have known ground-truth labels 

while the PBMC data have unknown ground-truth labels. When ground-truth labels are known, we 

employ three scores: the adjusted rand index (ARI), the adjusted mutual info score (AMI), and the 

homogeneity score. When ground-truth labels are not known, we use the Residual Average Gini Index 

(RAGI)112

112



Dropout experiments

To explore its transfer learning ability and test robustness to missing data, following Xiong et al.39, we 

evaluated scEmbed on datasets with increasing levels of information loss. Starting from the already 

sparse Buenrostro2018 cell-feature matrix (2.8% non-zero)90, we randomly dropped non-zero values 

in the binary accessibility matrix until ∼80% of the non-zero data were lost, resulting in a matrix that 

was 0.5% non-zero

Residual Average Gini Index

When ground truth labels are unknown, all aforementioned evaluation metrics are no longer 

applicable. As such, we need a measure that can still evaluate dataset clustering based on what one 

would expect, given some sort of prior knowledge about the system. For this, we employ a similar 

strategy described by Chen et. al. called the Residual Average Gini Index (RAGI). Briefly, the RAGI 

score compares the accessibility of housekeeping genes with previously characterized marker genes148. 

RAGI measures the average residual specificity of a clustering solution with respect to marker genes, 

suggesting that a good clustering solution should have clusters enriched for different marker genes 

and these genes should be highly accessible in only a few clusters, compared to the less informative 

housekeeping genes.

Transfer learning and projection

scEmbed was designed from the outset to facilitate fast, powerful transfer learning. This transfer 

approach allows scEmbed to take advantage of pre-trained reference models. We call this ‘projection’ 

because we ‘project’ new data into the latent space of the original dataset, creating cell embeddings 

for new data using a pre-trained model. Projection occurs in three steps: first, we train a model on 

reference data to produce region embeddings for each region in the reference consensus region set. 

For datasets where consensus peaks do not exist, methods that create such sets from raw data could 

be used as a pre-processing step90. Second, we take a new single-cell dataset and map the regions to 

the reference consensus region set using region overlaps. This represents each single cell in the new 

dataset using the set of regions from the reference dataset, for which we also have region embeddings 

from the reference model. Finally, we compute the average of all region embeddings for each cell 

in the new dataset. This approach leverages the information from a larger atlas of accessibility data 

to analyze a new dataset. In fact, the original training data need not come from scATAC-seq at all. 

Using this approach, a model trained with bulk ATAC-seq could be used to project scATAC-seq data. 

This provides an enormous advantage by utilizing the patterns of region co-occurrence from the vast 

volume of publicly available region set data to inform cell embeddings of single-cell data.

113



Projection visualization and cell-type annotation

Projection data flows

We distinguish between three data flows that can occur with scEmbed: no projection E-projection 

and EV-projection (Supplementary Figure A.3 A). First, we train a reference model using the typical 

no projection flow (Supplementary Figure A.3 B). This is the standard workflow of training a new 

scEmbed model on some input data and visualizing the resulting embeddings by fitting a UMAP model 

to reduce the dimensionality to two. Then, given a new query dataset, we could analyze it with any 

of the three data flows (Supplementary Figure A.3 C). In a no projection flow, we would not use the 

reference model at all; we train and visualize using only the new dataset. In embedding-only projection 

data flow (E-projection), new data are first embedded using the pre-trained reference model.

These embeddings may then be visualized by fitting a UMAP model to reduce dimensionality to two 

dimensions. The third data flow, and the novel innovation that accomplishes our goal of reference-

based visualization, is the embedding and visualization workflow (EV-projection). In this data flow, 

new data are first embedded using the pre-trained reference model, as in E-projection; then, these 

embeddings are further projected through a UMAP model that was fit on the reference data 

embeddings, rather than newly fit. With the EV-projection flow, plotting the two-dimensional cell 

representations on top of the reference data UMAP plot allows one to visualize where in the original 

embedding space the new data ended up. This is possible because the EV-projection re-uses the same 

topology from the UMAP model fit to the reference data (Supplementary Figure A.3 C).

Evaluation of cell type annotation

We use Cellcano, a novel scATAC-seq cell annotation method, to assign ground truth labels to our 

new PBMC data111 (Supplementary Figure A.5). We follow the online tutorials (https://marvinquiet.

github.io/Cellcano/) and leverage their provided reference dataset to process the new PBMC data. 

Once ground truth labels have been assigned by Cellcano and putative cell types are assigned, we 

can evaluate the performance of our model using the previously described classification metrics (see 

common methods).

114

https://marvinquiet.github.io/Cellcano/
https://marvinquiet.github.io/Cellcano/


Atacformer extended methods

Data collection and pre-processing

To develop a large training dataset of single-cell ATAC-seq data, we identified, downloaded, and 

uniformly processed data from three main sources: 1) the Gene Expression Omnibus, 2) the Human 

Cell Atlas, and 3) the 10X genomics dataset repository. Detailed information on dataset contents 

and availability can be found in supplemental. All datasets, unless noted, were downloaded as 

raw .fastq files. We designed and built a multi-stage pipeline to uniformly process the fastq 

files. First, we utilized CellRanger ATAC 2.1.0 to convert the fastqs into processed fragment files. 

Next, each fragment file was imported and initially processed using SnapATAC237. We utilized all 

recommended parameters noted in the “atlas-scale analysis” tutorial (“https://kzhang.org/SnapATAC

2/tutorials/atlas.html”). Both steps were parallelized on our computing cluster using the looper and 

PEP framework149.

Next, we again leveraged SnapATAC2 to perform atlas-wide dimensionality reduction, batch 

correction, and clustering. We performed a two-stage clustering approach. First, a coarse clustering 

across the entire dataset using Leiden clustering150, and then a secondary intra-cluster clustering 

also using leiden within each cluster. This yielded 359 distinct single-cell clusters within the atlas 

across all datasets. Each of the 359 clusters was pseudo-bulked into separate .fragment.tsv files for 

downstream analysis.

Generation of a uniform model vocabulary

A uniform vocabulary is essential for genomic region tokenization. For this, we leveraged both public 

and previously developed tools by our lab for generating genomic interval consensus sets. We utilized 

macs3 to perform peak-calling25 on each of the 359 pseudo-bulked fragment files, resulting in 359 

corresponding .narrowPeak files. Specifically, we used the peakcall function with the following 

parameters: -g hs -f BEDPE -q 0.01 --nomodel --shift -75 --extsize 200 --keep-dup all -

B --SPMR.

We next utilized our tool uniwig to unify all 359 peak sets into big wig (.bw) coverage tracks for 

the start, cores, and ends of all called peaks across all clusters. For uniwig we used the following 

parameters: -m 5 -s 1 -y wig -z 2. This resulted in three coverage track files for the starts, cores, 

and ends.

Finally, we used the coverage tracks as input into our previously published universe creation methods 

in geniml90. Using both the coverage cutoff and hidden markov model (HMM) algorithms, two 

115

https://kzhang.org/SnapATAC2/tutorials/atlas.html
https://kzhang.org/SnapATAC2/tutorials/atlas.html


consensus sets were created. These two bedfiles were finally merged into one unifying vocabulary for 

the model using bedtools merge98.

The final vocabulary has 890,704 distinct genomic regions into which all cells are tokenized.

Genomic interval tokenization

We conceptualized a unique tokenization method for our models that is designed to be as flexible 

and simple as possible, enabling broad use of Atacformer for many data types including bulk-

ATAC seq data. Any entity that can be represented as a BED-file is valid input to the model. As an 

example, a single-cell from a scATAC-seq experiment can be thought of as a “bag of co-accessible 

regions”consisting of a few thousand open chromatin regions. Each of these regions is overlapped 

with the model’s pre-defined vocabulary and serves as input to the embedding module and subsequent 

transformer encoder.

We leverage two highly-efficient methods for interval overlap computation: AIList101 and BITS107. 

We’ve implemented both algorithms in Rust and have made them available in Python for in-memory 

tokenization with a huggingface-compatible API. Code and documentation for our tokenizers can be 

found on GitHub in our gtars crate/package “https://github.com/databio/gtars”.

ELECTRA pre-training methodology

To pretrain Atacformer on single-cell data, we employed an ELECTRA-style replaced-token detection 

strategy. While most transformer encoder models use masked language modeling (MLM) for self-

supervised pretraining42, we found that MLM was poorly aligned with the properties of our model 

and data modality in two key ways. First, MLM requires computing a full probability distribution 

over the vocabulary at each training step. With nearly 1 million tokens, this becomes computationally 

intractable. Only recently have methods emerged to address this issue. Motivated by the growing 

vocabulary sizes in modern large language models (LLMs), techniques like Liger kernels151 and 

Cut Cross Entropy152 use linear-time approximations of cross entropy to dramatically reduce space 

and time complexity. We found these strategies applicable to Atacformer as well, since MLM is 

fundamentally a token prediction task. However, a second, more fundamental problem emerges: we 

identified that MLM effectively enforces an order among masked tokens, while shuffling the tokens 

should have no effect on the information content of a single-cell or corresponding regionset. More 

specifically, we recognized that the model predicting the correct tokens, but out of order was common 

and would provide an incorrect training signal to the model.

ELECTRA side-steps both of these problems entirely by reframing the pre-training task as binary 

classification: for each token, the model predicts whether it was replaced or not. This approach 

116

https://github.com/databio/gtars


does not depend on the model predicting tokens in a specific order, and moreover, doesn’t require 

computing a probability for all 890K tokens. Although genomic coordinates offer a natural means to 

introduce sequence order, we sought to avoid the model overly relying on deterministic positional 

cues, instead incentivizing it to capture meaningful biological patterns and relationships. To that end, 

Atacformer is distinctly free of any form of positional information in its input embeddings.

Formal specification of tokenization and pre-training

We begin by fixing a global vocabulary 𝑈  of non-overlapping genomic regions derived from our 

consensus universe (see previous section):

𝑈 = {𝑣{1},…, 𝑣{𝑉 }} (6)

For each single cell 𝑐 we observe an unordered set of raw, co-accessible regions

𝑅𝑐 = {𝑟1,…, 𝑟𝑁𝑐} (7)

Tokenization reduces these raw intervals to their canonical vocabulary representatives via a simple 

interval intersection:

𝐼𝑐 = {𝑣 ∈ 𝑈; ∃𝑟 ∈ 𝑅𝑐; 𝑣 ∩ 𝑟 ≠ ∅} (8)

We then map each vocabulary element to its integer identifier, producing a sequence of token indices

𝑇𝑐 = {id(𝑣); 𝑣 ∈ 𝐼𝑐} (9)

To create a learning signal we apply ELECTRA-style corruption129. Each position 𝑗 is independently 

selected for replacement with probability 𝑝 = 0.45:

𝛿𝑗 ∼ Bernoulli(𝑝), 𝑧𝑗 ∼ Unif(𝑈) (10)

The corrupted token sequence is therefore:

𝑐, 𝑗 = {
𝑧𝑗 if 𝛿𝑗 = 1
𝑇{𝑐,𝑗} if 𝛿𝑗 = 0

(11)

Every token id is looked up in a shared embedding matrix 𝐸 ∈ ℝ𝑉×𝑑 to obtain dense vectors

𝑥𝑗 = 𝐸𝑇𝑐,𝑗 , (12)

𝑋𝑐 = (𝑥1,…, 𝑥|𝐼𝑐|) (13)

117



These embeddings pass through 𝐿 stacked transformer encoder layers (no positional encodings are 

supplied):

𝐻(0) = 𝑋𝑐, (𝐻ℓ−1) (14)

𝐻ℓ = TransformerLayerℓ (15)

𝐿 = 1,…, ℓ (16)

The final contextual embedding at each position 𝑗 is

ℎ𝑗 = 𝐻
(𝐿)
𝑗 . (17)

A lightweight classifier head converts each contextual vector into the probability that the original 

token was replaced:

𝑠𝑗 = 𝑊𝑜ℎ𝑗 + 𝑏, 𝑦𝑗 = 𝜎(𝑠𝑗). (18)

Training minimizes the binary cross-entropy replaced-token detection loss over all positions in 

the cell:

ℒ︀𝑐 = −∑
|𝐼𝑐|

𝑗=1
[𝛿𝑗 log(𝑦𝑗) + (1 − 𝛿𝑗) log(1 − 𝑦𝑗)] (19)

Averaging ℒ︀𝑐 over the mini-batch and optimizing with AdamW completes the pre-training procedure.

Cell embedding calculation

To generate single-cell embeddings, we first tokenize a single-cell according to the steps outlined 

above. We then pass the tokens through the model to obtain a contextualized embedding 

representation for each region-token in that cell:

𝐻ℓ = AtacformerBase({𝑒1,…, 𝑒𝑗}) ∈ ℝ𝑗×𝑑model (20)

Where 𝑒𝑗 is the initial token embedding for the 𝑗th region token. We then obtain cell-embeddings by 

pooling all contextualized region-embeddings through mean-pooling:

𝐸cell =
1
𝑗
∑
𝑗−1

𝑖=0
ℎ𝑖 ∈ ℝ𝑑model (21)

where ℎ𝑖 is the contextualized embedding vector for the 𝑖th token.

118



Triplet loss calculation

For cell-type fine-tuning we use a standard triplet-loss formula. For each training step, the model sees 

three cells: 1) an anchor cell which may be of any cell-type, 2) a positive example which is of the same 

cell-type as the anchor, and 3) a negative example which is of another cell-type than the anchor cell. 

We pass each cell through the model and mean-pool token embeddings to obtain a single embedding 

to represent the entire cell; one for the anchor (𝑎), the positive (𝑝), and the negative (𝑛). Loss for a 

single mini-batch is computed as such:

L(a,p,n) = max{𝑑(𝑎𝑖, 𝑝𝑖) − 𝑑(𝑎𝑖, 𝑛𝑖) + margin, 0} (22)

where

𝑑(𝑥𝑖, 𝑦𝑖) = | 𝑥𝑖 − 𝑦𝑖 |𝑝 (23)

We use the torch module torch.nn.TripletMarginLoss with default values, margin = 1.0, and 𝑝 =

2.0.

Datasets for clustering evaluation

PBMC5k NextGEM v 1.1

For PBMC5K, we obtained raw matrix, peak, and barcode files from the 10X website: “https://www.

10xgenomics.com/datasets/5-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-

next-gem-v-1-1-1-1-standard-2-0-0”. These three files were converted to an AnnData object from the 

scanpy package.

Brain dataset

For the pre-annotated brain dataset, we utilize a multi-omic single-nucleus study of 191,890 nuclei 

in late-stage Alzheimer’s disease (AD)153. Cells in this dataset were annotated using gene expression 

data to assign ground-truth labels to each cell. These labels were used for downstream clustering 

metrics evaluation.

Simulated

Evaluating model performance on real, pre-annotated datasets is subjected to the bias in the 

annotation procedure. This can cause misleading results according to inaccuracies in the labeling 

process. To that end, we supplemented our two datasets with a third, simulated dataset. Following a 

similar procedure to Chen et. al.95, we generated a simulated scATAC-seq dataset using bulk-ATAC 

data from ENCODE. We first generate a peak by count matrix from 5 bulk-ATAC seq datasets: NK Cells 

(ENCSR305QTE), Memory B Cells (ENCSR610AQP), Naive B Cells (ENCSR685OFR), Dendritic Cells 

(ENCSR237VSF), CD4+ T cells (ENCSR841LHT), and CD8+ T cells (ENCSR476VJY). We leverage the 

119

https://www.10xgenomics.com/datasets/5-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-next-gem-v-1-1-1-1-standard-2-0-0
https://www.10xgenomics.com/datasets/5-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-next-gem-v-1-1-1-1-standard-2-0-0
https://www.10xgenomics.com/datasets/5-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-next-gem-v-1-1-1-1-standard-2-0-0


simulation code provided by the Pinello lab: https://github.com/pinellolab/scATAC-benchmarking/

blob/master/Synthetic_Data/Simulate_scATAC/BoneMarrow/simulate_bonemarrow_depth.ipynb

PBMC dataset cell-type annotation

Because ground-truth labels are necessary for adequately assessing the clustering performance of cell-

embeddings, we performed cell-type annotation on all three datasets. Each annotation was performed 

in an identical manner. To do so, we followed a very similar approach to the cell-type annotation 

approach described by LeRoy et. al. [106]. Briefly, we leveraged a pre-trained scEmbed model trained 

specifically on a high-quality blood dataset, Luecken2021[118]. Embeddings were generated for both 

the reference dataset (Luecken2021) and the query datasets (PBMC 1/5/10k). Then, using the shared 

latent space, we performed a K-nearest-neighbors (KNN) label transfer task. We used scEmbed from 

the geniml module on GitHub: “https://github.com/databio/geniml” and the KNeighborsClassifier 

from sklearn.neighbors. Due to the intrinsic sparsity of many detailed T-cell subtypes, we collapsed 

these rare variants into broader T-cell categories. This aggregation prevents overfragmentation during 

clustering, ensuring a more statistically robust and biologically meaningful representation of T-cell 

populations.

Labeling data with scVI

To label the brain dataset, we utilized the scvi-tools package38. Specifically, we used the scanvi 

model to perform semi-supervised cell-type annotation. We first created an AnnData object from the 

raw count matrix and then split the data into labeled and unlabeled sets. The labeled set consisted of 

20% of the total cells, while the remaining 80% were unlabeled. We then trained the scanvi model on 

the labeled data for 400 epochs with default parameters. After training, we used the model to predict 

cell-type labels for the unlabeled cells. Finally, we combined the predicted labels with the original 

labeled data to obtain a complete set of cell-type annotations for the entire dataset.

Bulk training data selection

To generate a large dataset for fine-tuning on bulk data, we first started with all bed-files annotated 

with hg38 on BEDbase. Because Atacformer has a context window of 8,192 tokens, we next filtered 

down these bedfiles into a subset that could reasonable fit within this context window, subsampling 

tokens as necessary. We set the cutoff for number of regions in the bedfile to be 81,920 (10x the 

context window).

We tokenized the BED files that met this criteria and used them as input into the training pipeline, 

subsampling tokens from the file when necessary.

Spearman correlation

The spearman corrrelation can be computed as follows:

120

https://github.com/pinellolab/scATAC-benchmarking/blob/master/Synthetic_Data/Simulate_scATAC/BoneMarrow/simulate_bonemarrow_depth.ipynb
https://github.com/pinellolab/scATAC-benchmarking/blob/master/Synthetic_Data/Simulate_scATAC/BoneMarrow/simulate_bonemarrow_depth.ipynb
https://github.com/databio/geniml


𝜌 = 1 − 6∑𝑑2𝑖
𝑛(𝑛2 − 1)

(24)

where 𝑑{𝑖} is the difference between the two ranks of each observation and 𝑛 is the number 

of observations. To compute the value, we leveraged the scipy.stats module and the spearmanr 

function.

Bulk ATAC-seq data imputation

To evaluate Atacformer’s ability to impute missing regions in bulk ATAC-seq data, we curated distinct 

training and test sets from BEDbase. A significant portion of samples on BEDbase lacked explicit cell-

line annotations, with the metadata field often marked as null. We discovered that for many of these 

cases, the cell line could be inferred by parsing the sample’s free-text description. For instance, if a 

description contained “HEK293”, we assigned that sample the “HEK293” cell-line label. Our test set 

was constructed exclusively from these samples where the cell line was inferred. The training set, in 

contrast, was composed of all samples from BEDbase that had explicit, non-null cell-line annotations. 

This strategy provided a natural train/test split for evaluating the model’s performance on a realistic 

imputation task.

Multiome data processing

To curate a large multiome dataset, we downloaded and processed four datasets: three from the 10X 

genomics dataset repository and then the previously described Luecken2021 dataset118. The three 

10X datasets were: 1) brain3k multiome “https://www.10xgenomics.com/datasets/frozen-human-

healthy-brain-tissue-3-k-1-standard-2-0-0, 2) kidney22k “https://www.10xgenomics.com/datasets/

human-kidney-cancer-nuclei-isolated-with-chromium-nuclei-isolation-kit-saltyez-protocol-and-10x-

complex-tissue-dp-ct-sorted-and-ct-unsorted-1-standard”, and 3) pbmc10k multiome “https://www.

10xgenomics.com/datasets/10-k-human-pbm-cs-multiome-v-1-0-chromium-controller-1-standard-2-

0-0”. For each dataset, we downloaded the cell by feature matrix as a matrix-market file (.mtx), the 

barcodes as a .txt file, and the features as a .tsv file. We combined these files into an .h5ad file for 

each dataset using the scanpy, pandas and scipy python packages.

Each dataset was tokenized into the universe as previously described and used for training CRAFT.

CRAFT architecture

The CRAFT architecture closely follows the design of the CLIP model, which jointly trains two 

separate encoders to project different modalities into a shared latent space. In our implementation, 

we replaced the original CLIP encoders with domain-specific architectures: the ATAC encoder was 

substituted with the atacformer, a transformer-based model tailored for chromatin accessibility data, 

and the RNA encoder was replaced with geneformer, optimized for gene expression profiles:

121

https://www.10xgenomics.com/datasets/frozen-human-healthy-brain-tissue-3-k-1-standard-2-0-0
https://www.10xgenomics.com/datasets/frozen-human-healthy-brain-tissue-3-k-1-standard-2-0-0
https://www.10xgenomics.com/datasets/human-kidney-cancer-nuclei-isolated-with-chromium-nuclei-isolation-kit-saltyez-protocol-and-10x-complex-tissue-dp-ct-sorted-and-ct-unsorted-1-standard
https://www.10xgenomics.com/datasets/human-kidney-cancer-nuclei-isolated-with-chromium-nuclei-isolation-kit-saltyez-protocol-and-10x-complex-tissue-dp-ct-sorted-and-ct-unsorted-1-standard
https://www.10xgenomics.com/datasets/human-kidney-cancer-nuclei-isolated-with-chromium-nuclei-isolation-kit-saltyez-protocol-and-10x-complex-tissue-dp-ct-sorted-and-ct-unsorted-1-standard
https://www.10xgenomics.com/datasets/10-k-human-pbm-cs-multiome-v-1-0-chromium-controller-1-standard-2-0-0
https://www.10xgenomics.com/datasets/10-k-human-pbm-cs-multiome-v-1-0-chromium-controller-1-standard-2-0-0
https://www.10xgenomics.com/datasets/10-k-human-pbm-cs-multiome-v-1-0-chromium-controller-1-standard-2-0-0


# adapted from Radford2021 (Fig 3).
# gene_encoder  - Geneformer
# atac_encoder  - Atacformer
# R[n, h, w, c] - minibatch of aligned RNA-seq profiles
# A[n, l]       - minibatch of aligned ATAC-seq profiles
# W_i[d_i, d_e] - learned proj of rna profile to embed
# W_t[d_t, d_e] - learned proj of atac profile to embed
# t             - learned temperature parameter

# extract feature representations of each modality
R_f = gene_encoder(R) #[n, d_i]
A_f = atac_encoder(A) #[n, d_t]

# joint multimodal embedding [n, d_e]
R_e = l2_normalize(np.dot(R_f, W_i), axis=1)
A_e = l2_normalize(np.dot(A_f, W_t), axis=1)

# scaled pairwise cosine similarities [n, n]
logits = np.dot(R_e, A_e.T) * np.exp(t)

# symmetric loss function
labels = np.arange(n)
loss_r = cross_entropy_loss(logits, labels, axis=0)
loss_a = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_r + loss_a)/2

We train CRAFT starting with a pre-traiend Geneformer and Atacformer model. Namely, we use 

Geneformer/gf-12L-30M-i2048 and databio/atacformer-base-hg38" respectively. We trained for 

15 epochs using a linear learning rate scheduler with a maximum learning rate of 5e − 5.

pbmc5k dataset processing for RNA-imputation experiments

To prepare a dataset, we utilize closely follow the “RNA integration” tutorial offered by the 

SnapATAC2 documentation: “https://scverse.org/SnapATAC2/tutorials/annotation.html”. Briefly, the 

pbmc5k dataset was imported from SnapATAC2, filtered, dimensionality-reduced, and subsequent 

cell-type annotation was performed using scvi.

CRAFT RNA decoder

Using pytorch, we built a small decoder to predict a cell’s RNA-expression profile from its 

corresponding shared latent space ATAC embedding. We used a simple feedforward neural network 

with one hidden layer.

To obtain the shared latent space embedding from the ATAC data, we first encoded the cell’s ATAC 

profile using an encoder network. The encoder consisted of a fully connected layer that projected 

the high-dimensional ATAC input into a lower-dimensional latent space, followed by a non-linear 

activation function (ReLU). The output of this encoder served as the input to the RNA decoder.

The overall architecture thus consisted of an ATAC encoder, which mapped the input ATAC features 

to a latent representation, and an RNA decoder, which predicted the RNA expression profile from this 

latent space.

122

https://scverse.org/SnapATAC2/tutorials/annotation.html


Annotation of Atacformer universe for TSS distance and region type

To annotate the distance to the nearest TSS to each token in our vocabulary, we first downloaded the 

most recent comprehensive gene annotation (GTF) file from GENCODE(“https://www.gencodegenes.

org/human/release_38.html”). We filtered this file to obtain just the TSS annotations using common 

unix command-line tools like awk and sort. Next we leveraged bedtools to obtain distances to the 

nearest TSS. Specifically, we used the bedbase closest command with the -t first flag to ensure 

each region in our universe was only associated with one TSS.

Similarly, we downloaded the latest cCRE annotations from ENCODE screen (https://screen.

encodeproject.org) for hg38. We utilized bedtools intersect to annotate each region with a discrete 

label (pELS, dELS, CTCF, etc).

H3K4me3 null distribution generation

To evaluate H3K4me3 signal enrichment in our icTSS regions across cell types, we first generated 

a null distribution representing the expected signal overlap in randomly selected genomic regions 

of comparable size. Specifically, we randomly sampled 𝑁  regions from the Atacformer universe – 

where 𝑁  equals the number of icTSS regions in each set (B cells and monocytes) – using standard 

Unix command-line utilities such as shuf. This sampling procedure was repeated 500 times to 

build a distribution of random region sets. For each set, we computed the mean coverage using 

bigWigAverageOverBed from the bigtools package154, then averaged the resulting signal across all 

regions. The resulting distribution was plotted as a histogram, and the same statistic was computed 

for the true icTSS regions to quantify their enrichment relative to the null.

123

https://www.gencodegenes.org/human/release_38.html
https://www.gencodegenes.org/human/release_38.html
https://screen.encodeproject.org
https://screen.encodeproject.org

	Acknowledgements
	Abstract
	Table of contents
	List of figures
	List of tables
	Chapter 1: Introduction to gene regulation, ATAC-seq and current analytical challenges
	A brief history of gene regulation and the study of chromatin accessibility
	Why does the same DNA makes different cells?
	The rise of epigenomics assays
	Mapping epigenetic modifications
	DNA methylation analysis through bisulfite sequencing

	Profiling protein-DNA interactions
	Chromatin immunoprecipitation sequencing (ChIP-seq)
	CUT&TAG

	Measuring chromatin accessibility
	DNase hypersensitivity sequencing (DNase-seq)
	Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE-seq)
	Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq)

	Capturing three-dimensional genome organization
	Chromatin Conformation Capture (Hi-C)

	Integration and single-cell advances

	Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and its single-cell counterpart

	Computational challenges in single-cell ATAC-seq analysis
	The high-dimensionality and inherent sparsity of scATAC-seq data
	Traditional single-cell ATAC-seq analysis methods
	Peak-based variability analysis: chromVAR
	Sequence-based dimensionality reduction: BROCKMAN
	Gene activity scoring and regulatory networks: Cicero
	Topic modeling approaches: cisTopic
	Latent semantic indexing approaches
	SnapATAC: Bin-based analysis with regression normalization

	End-to-end pipelines and more recent methods

	Deep learning-based methods for scATAC-seq analysis
	Generative modeling approaches
	SCALE: A variational autoencoder for scATAC-seq
	PeakVI: A variational inference model with batch correction

	Sequence-based discriminative approaches
	scBasset: A convolutional neural network for sequence-based chromatin accessibility

	Limitations of current approaches

	Large, pre-trained foundation models for genomic data
	Foundation models in genomics
	Foundation models for single-cell ATAC-seq data
	A note on tokenization
	The first scATAC-seq foundation models: EpiAgent and ChromFound
	Limitations of current scATAC-seq foundation models: EpiAgent and ChromFound
	Overview of EpiAgent
	Overview of ChromFound
	Limitations


	Summary of computational methods for scATAC-seq analysis
	Improving model sharing, efficiency, and flexibility of scATAC-seq foundation models

	Chapter 2: Background and related work in natural language processing (NLP)
	Preface
	The rise of natural language processing
	Word2Vec and word embeddings
	From words to numbers: the challenge of word representation
	One-hot encoding
	Distributed representations
	Word2vec

	Recurrent Neural Networks and their gated variants
	A river bank or a financial bank? Contextual embeddings and their limitations
	Recurrent Neural Networks (RNNs)
	Long Short-Term Memory (LSTM) networks

	Transformers and attention mechanisms
	Transformers
	Self attention
	Approximations of self-attention
	Low-rank & kernel-based approximations
	Sparse attention mechanisms
	Algorithmic improvements


	From transformers to large language models and beyond
	Large language models and foundation models

	Summary of NLP techniques
	From words to genomic regions: adapting NLP techniques to gene regulation
	Building machine learning models for genomic interval data using genomic tokens


	Chapter 3: Efficient computational tools for creating genomic interval vocabularies and tokenization frameworks for modern machine learning applications
	Introduction
	Results
	Creating a principled vocabulary for genomic intervals
	Overview of uniwig: a pre-processing tool for consensus genomic interval set construction
	Simple coverage-based universe construction
	Novel methods for constructing consensus genomic interval sets
	Coverage Cutoff Flexible (CCF) Universe
	Maximum Likelihood (LH) Universe
	Hidden Markov Model (HMM) Universe

	Overview of genomic interval tokenizers
	Gtars tokenizers are highly performant
	Gtars tokenizers work seamlessly with modern machine learning infrastructure
	Gtars tokenizers are available in a wide array of computing environments.

	Discussion

	Chapter 4: Fast clustering and annotation of scATAC-seq data using pretrained region embeddings
	Introduction to scEmbed
	Results
	Overview of the scEmbed architecture
	scEmbed is competitive with existing scATAC-seq methods
	scEmbed is robust to data loss
	Using scEmbed to transfer knowledge of genomic region co-occurrence to unseen datasets
	Pre-trained models from reference datasets can be used to annotate cell clusters

	Discussion and future work

	Chapter 5: Atacformer: A transformer-based foundation model for analysis and interpretation of ATAC-seq data
	Introduction to Atacformer
	Results
	Atacformer is a new transformer-based foundation model for ATAC-seq data
	Atacformer can be paired with Geneformer for powerful multiomics analysis
	Fine-tuned Atacformer models and CRAFT enable fast and accurate zero-shot cell-clustering
	Atacformer learns global regulatory structure in bulk region set data
	Direct raw-fragment processing with atacformer accelerates scATAC analysis
	Contextualized region embeddings from scATAC-seq data infers cryptic TSSs

	Discussion

	Chapter 6: Conclusions and future work
	Overview and Summary of Contributions
	Technical limitations and challenges
	Future Directions: Improving generalization, efficiency, and interpretability of regulatory genomics models
	Future aim 1: Scaling the training Atlas
	Motivation
	Proposed approach
	Expected impact and evaluation

	Future aim 2: Improved tokenization strategies
	Motivation
	Proposed approach: Importance scoring
	Proposed approach: Ordering strategies
	Expected impact

	Future aim 3: Token-level interpretability and fine-tuning
	Motivation
	Proposed approach: Attention matrix analysis
	Proposed approach: Token-level fine-tuning
	Expected impact

	Future aim 4: Context window optimization — exploring the extremes
	Motivation
	Proposed approach: Scaling down with efficient architectures
	Proposed approach: Scaling up for bulk data integration
	Expected impact


	Broader Impact and Closing Remarks

	References
	Appendix A: Supplemental figures and tables
	Infrastructure extended figures
	scEmbed extended figures
	Atacformer extended figures

	Appendix B: Extended methods
	Common methods across results
	Clustering methodologies
	Embedding visualization
	Clustering evaluation
	Adjusted Rand Index
	Adjusted Mutual Info Score
	Homogeneity Score

	Cell-type classification evaluation
	F1 score


	Infrastructure extended methods
	Gtars and uniwig
	Universe construction methods
	Coverage cutoff (CC) universe
	Maximum likelihood (LH) universe
	Hidden Markov Model (HMM) universe

	Tokenization methods
	Environment bindings
	Tokenization benchmarking
	Software and data availability

	scEmbed extended methods
	Model architecture and training
	Data and data processing
	Tokenization of new data
	Model benchmarking and evaluation
	Dropout experiments
	Residual Average Gini Index
	Transfer learning and projection
	Projection visualization and cell-type annotation
	Projection data flows
	Evaluation of cell type annotation


	Atacformer extended methods
	Data collection and pre-processing
	Generation of a uniform model vocabulary
	Genomic interval tokenization
	ELECTRA pre-training methodology
	Formal specification of tokenization and pre-training
	Cell embedding calculation
	Triplet loss calculation
	Datasets for clustering evaluation
	PBMC5k NextGEM v 1.1
	Brain dataset
	Simulated

	PBMC dataset cell-type annotation
	Labeling data with scVI
	Bulk training data selection
	Spearman correlation
	Bulk ATAC-seq data imputation
	Multiome data processing
	CRAFT architecture
	CRAFT RNA decoder
	Annotation of Atacformer universe for TSS distance and region type
	H3K4me3 null distribution generation



